Browse > Article
http://dx.doi.org/10.4014/jmb.1606.06039

Sclareol Protects Staphylococcus aureus-Induced Lung Cell Injury via Inhibiting Alpha-Hemolysin Expression  

Ouyang, Ping (College of Veterinary Medicine, Sichuan Agriculture University)
Sun, Mao (College of Veterinary Medicine, Sichuan Agriculture University)
He, Xuewen (College of Veterinary Medicine, Sichuan Agriculture University)
Wang, Kaiyu (College of Veterinary Medicine, Sichuan Agriculture University)
Yin, Zhongqiong (College of Veterinary Medicine, Sichuan Agriculture University)
Fu, Hualin (College of Veterinary Medicine, Sichuan Agriculture University)
Li, Yinglun (College of Veterinary Medicine, Sichuan Agriculture University)
Geng, Yi (College of Veterinary Medicine, Sichuan Agriculture University)
Shu, Gang (College of Veterinary Medicine, Sichuan Agriculture University)
He, Changliang (College of Veterinary Medicine, Sichuan Agriculture University)
Liang, Xiaoxia (College of Veterinary Medicine, Sichuan Agriculture University)
Lai, Weiming (College of Veterinary Medicine, Sichuan Agriculture University)
Li, Lixia (College of Veterinary Medicine, Sichuan Agriculture University)
Zou, Yunfeng (College of Veterinary Medicine, Sichuan Agriculture University)
Song, Xu (College of Veterinary Medicine, Sichuan Agriculture University)
Yin, Lizi (College of Veterinary Medicine, Sichuan Agriculture University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.1, 2017 , pp. 19-25 More about this Journal
Abstract
Staphylococcus aureus (S. aureus) is a common gram-positive bacterium that causes serious infections in humans and animals. With the continuous emergence of methicillin-resistant S. aureus (MRSA) strains, antibiotics have limited efficacy in treating MRSA infections. Accordingly, novel agents that act on new targets are desperately needed to combat these infections. S. aureus alpha-hemolysin plays an indispensable role in its pathogenicity. In this study, we demonstrate that sclareol, a fragrant chemical compound found in clary sage, can prominently decrease alpha-hemolysin secretion in S. aureus strain USA300 at sub-inhibitory concentrations. Hemolysis assays, western-blotting, and RT-PCR were used to detect the production of alpha-hemolysin in the culture supernatant. When USA300 was co-cultured with A549 epithelial cells, sclareol could protect the A549 cells at a final concentration of $8{\mu}g/ml$. The protective capability of sclareol against the USA300-mediated injury of A549 cells was further shown by cytotoxicity assays and live/dead analysis. In conclusion, sclareol was shown to inhibit the production of S. aureus alpha-hemolysin. Sclareol has potential for development as a new agent to treat S. aureus infections.
Keywords
Methicillin-resistant Staphylococcus aureus; virulence factor; sclareol; alpha-hemolysin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Barber M. 1961. Methicillin-resistant staphylococci. J. Clin. Pathol. 14: 385-393.   DOI
2 Boyle-Vavra S, Daum RS. 2007. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab. Invest. 87: 3-9.   DOI
3 Nimmo GR. 2012. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 18: 725-734.   DOI
4 van der Mee-Marquet NL. 2016. Whole-genome sequencing analysis, an essential tool for shedding light on the obscure evolution of Staphylococcus aureus USA300. J. Infect. Dis. 213: 1362-1363.   DOI
5 Rossolini GM, Arena F, Pecile P, Pollini S. 2014. Update on the antibiotic resistance crisis. Curr. Opin. Pharmacol. 18: 56-60.   DOI
6 Montgomery CP, Boyle-Vavra S , Adem PV, L ee JC, H u sain AN, Clasen J, Daum RS. 2008. Comparison of virulence in community-associated methicillin-resistant Staphylococcus aureus pulsotypes USA300 and USA400 in a rat model of pneumonia. J. Infect. Dis. 198: 561-570.   DOI
7 Montgomery CP, Boyle-Vavra S, Daum RS. 2010. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One 5: e15177.   DOI
8 Husmann M, Dersch K, Bobkiewicz W, Beckmann E, Veerachato G, Bhakdi S. 2006. Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem. Biophys. Res. Commun. 344: 1128-1134.   DOI
9 Berube BJ, Bubeck Wardenburg J. 2013. Staphylococcus aureus alpha-toxin: nearly a century of intrigue. Toxins (Basel) 5: 1140-1166.   DOI
10 Adhikari RP, Ajao AO, Aman MJ, Karauzum H, Sarwar J, Lydecker AD, et al. 2012. Lower antibody levels to Staphylococcus aureus exotoxins are associated with sepsis in hospitalized adults with invasive S. aureus infections. J. Infect. Dis. 206: 915-923.   DOI
11 Fritz SA, Tiemann KM, Hogan PG, Epplin EK, Rodriguez M, Al-Zubeidi DN, et al. 2013. A serologic correlate of protective immunity against community-onset Staphylococcus aureus infection. Clin. Infect. Dis. 56: 1554-1561.   DOI
12 Kolata J, Bode LG, Holtfreter S, Steil L, Kusch H, Holtfreter B, et al. 2011. Distinctive patterns in the human antibody response to Staphylococcus aureus bacteremia in carriers and non-carriers. Proteomics 11: 3914-3927.   DOI
13 Bubeck Wardenburg J, Bae T, Otto M, Deleo FR, Schneewind O. 2007. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat. Med. 13: 1405-1406.   DOI
14 Rau ch S , DeDent AC, K im H K, Bubeck Wardenburg J, Missiakas DM, Schneewind O. 2012. Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. Infect. Immun. 80: 3721-3732.   DOI
15 Kennedy AD, Bubeck Wardenburg J, Gardner DJ, Long D, Whitney AR, Braughton KR, et al. 2010. Targeting of alphahemolysin by active or passive immunization decreases severity of USA300 skin infection in a mouse model. J. Infect. Dis. 202: 1050-1058.   DOI
16 Novick RP, Ross H, Projan S, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12: 3967-3975.
17 Peng H, Novick R, Kreiswirth B, Kornblum J, Schlievert P. 1988. Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. J. Bacteriol. 170: 4365-4372.   DOI
18 Qiu J, Xiang H, H u C, Wang Q , Dong J, Li H , et al. 2011. Subinhibitory concentrations of farrerol reduce alpha-toxin expression in Staphylococcus aureus. FEMS Microbiol Lett. 315: 129-133.   DOI
19 Worlitzsch D, Kaygin H, Steinhuber A, Dalhoff A, Botzenhart K, Doring G. 2001. Effects of amoxicillin, gentamicin, and moxifloxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob. Agents Chemother. 45: 196-202.   DOI
20 Ohlsen K, Ziebuhr W, Koller K-P, Hell W, Wichelhaus TA, Hacker J. 1998. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 42: 2817-2823.
21 Wang D, Yu L, Xiang H, et al. 2008. Global transcriptional profiles of Staphylococcus aureus treated with berberine chloride. FEMS Microbiol. Lett. 279: 217-225.   DOI
22 Miski M, Ulubelen A, Johansson C, Mabry TJ. 1983. Antibacterial activity studies of flavonoids from Salvia palaestina. J. Nat. Prod. 46: 874-875.   DOI
23 Bhatia S, McGinty D, Letizia C, Api A. 2008. Fragrance material review on sclareol. Food Chem. Toxicol. 46: S270-S274.   DOI
24 Dimas K, Kokkinopoulos D, Demetzos C, Vaos B, Marselos M, Malamas M, Tzavaras T. 1999. The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leukemia Res. 23: 217-234.   DOI
25 CLSI. 2005. Performance standards for antimicrobial susceptiblity testing; fifteenth informational supplement (ISBN 1-56238-556-9). CLSI Document M100-S15. Clinical Laboratory Standards Institute, Wayne, PA, USA.
26 Ou yang P , Chen J , Sun M, Y in Z , Lin J, F u H, et al. 2016. Imperatorin inhibits the expression of alpha-hemolysin in Staphylococcus aureus strain BAA-1717 (USA300). Antonie Van Leeuwenhoek 109: 915-922.   DOI
27 Dong J, Qiu J, Wang J, Li H, Dai X, Zhang Y, et al. 2013. Apigenin alleviates the symptoms of Staphylococcus aureus pneumonia by inhibiting the production of alpha-hemolysin. FEMS Microbiol. Lett. 338: 124-131.   DOI
28 Qiu J, Luo M, Wang J, Dong J, Li H, Leng B, et al. 2011. Isoalantolactone protects against Staphylococcus aureus pneumonia. FEMS Microbiol. Lett. 324: 147-155.   DOI
29 Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A, Fahmi NE, et al. 2007. Inhibition of S. aureus alpha-hemolysin and B. anthracis lethal toxin by betacyclodextrin derivatives. Bioorg. Med. Chem. 15: 5424-5431.   DOI
30 Lowy FD. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520-532.   DOI
31 Kock R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, et al. 2010. Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill. 15: 19694.
32 Hirst RA, Yesilkaya H, Clitheroe E, Rutman A, Dufty N, Mitchell TJ, et al. 2002. Sensitivities of human monocytes and epithelial cells to pneumolysin are different. Infect. Immun. 70: 1017-1022.   DOI
33 Bubeck Wardenburg J, Schneewind O. 2008. Vaccine protection against Staphylococcus aureus pneumonia. J. Exp. Med. 205: 287-294.   DOI
34 Liang X, Yan M, Ji Y. 2009. The H35A mutated alpha-toxin interferes with cytotoxicity of staphylococcal alpha-toxin. Infect. Immun. 77: 977-983.   DOI
35 Allen RC, Popat R, Diggle SP, Brown SP. 2014. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12: 300-308.   DOI
36 Defoirdt T. 2013. Antivirulence therapy for animal production: filling an arsenal with novel weapons for sustainable disease control. PLoS Pathog. 9: e1003603.   DOI
37 Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128.   DOI
38 Wang J, Qiu J, Tan W, Zhang Y, Wang H, Zhou X, et al. 2015. Fisetin inhibits Listeria monocytogenes virulence by interfering with the oligomerization of listeriolysin O. J. Infect. Dis. 211: 1376-1387.   DOI
39 Li H, Chen Y, Zhang B, Niu X, Song M, Luo Z, et al. 2016. Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochem. Pharmacol. 106: 19-29.   DOI