• Title/Summary/Keyword: Grain growth exponent

Search Result 20, Processing Time 0.024 seconds

Sintering Behaviors of ITO Ceramics with Additions of TiO$_2$ (TiO$_2$첨가에 따른 ITO 세라믹스의 소결 거동)

  • 정성경;김봉철;장세홍;김정주
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.347-354
    • /
    • 1998
  • Densification and grain growth behaviors of ITO ceramics were investigated as a function of TiO2 ad-ditions. TiO2 addition led to inhibition of the grain growth and promotion of the densification of ITO ceram-ics. From the microstructure observation it was found that the crack-like voids which were formed in pure ITO specimens decreased with increase of TiO2 additon. The grain growth exponent(n) was measur-ed to be 4 for pure ITO 3 for TiO2-doped ITO specimens respectively. It was supposed that the grain boun-dary migration of pure ITO ceramics was controlled by the pores which were moved by surface diffusion. On the contrary the grain boundary migration of TiO2-doped ITO specimens was depressed by solute drag effect. The activation energies for grain growth were measured to be 1013 kJ/mol for pure ITO ceramics and 460kJ/mol for TiO2-doped ITO specimens respectively.

  • PDF

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: III. Prediction Model for the Austenite Grain Growth Considering the Influence of Initial Austenite Grain Size in Weld HAZ of Precipitates Free Low Alloyed Steel (용접 열영향부 미세조직 및 재질 예측 모델링 : III. 석출물 - Free 저합금강의 초기 오스테나이트 결정립크기의 영향을 고려한 용접 열영향부 오스테나이트 결정립성장 예측 모델)

  • Uhm, Sang-Ho;Moon, Joon-Oh;Jeong, Hong-Chul;Lee, Jong-Bong;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.39-49
    • /
    • 2006
  • The austenite grain growth model in low alloyed steel HAZ without precipitates was proposed by analyzing isothermal grain growth behavior. Steels used in this study were designed to investigate the effect of alloying elements. Meanwhile, a systematic procedure was proposed to prevent inappropriate neglect of initial grain size (D0) and misreading both time exponent and activation energy for isothermal grain growth. It was found that the time exponent was almost constant, irrespectively of temperature and alloying elements, and activation energy increased with the addition of alloying elements. From quantification of the effect of alloying elements on the activation energy, an isothermal grain growth model was presented. Finally, combining with the additivity rule, the austenite grain size in the CGHAZ was predicted.

Computer simulation of the effects of anisotropic grain boundary energy on grain growth in 2-D (이방성 결정립 계면에너지의 2차원 결정립 성장에 미치는 효과에 대한 컴퓨터 모사)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.178-182
    • /
    • 2012
  • The grain growth is very important because of its great influence on the various materials properties. Therefore, in this study, the effects of anisotropic grain boundary energy on grain growth in 2-D have been investigated with a large scale phase field simulation model on PC. A $2000{\times}2000$ grid system and the initial number of grains of about 73,000 were used in the computer simulation. The anisotropic ratio of grain boundary energy, ${\sigma}_{max}/{\sigma}_{min}$, has been varied from 1 to 3. As the anisotropy increased, the grain growth exponent, n, increased from 2.05 to 2.37. The grain size distribution showed a central plateau in the isotropic case, and was changed into no central plateau and the increasing population of very small grains in the anisotropic case, resulting from slowly disappearing grains. Finally, simulated microstructures were compared according to anisotropy.

Study on Anomalous Scaling Exponents for Molecular Thin Film Growth Using Surface Lateral Diffusion Model

  • Gong, Hye-Jin;Yim, Sang-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2237-2242
    • /
    • 2011
  • Anomalous scaling behaviors such as significantly large growth exponent (${\beta}$) and small reciprocal of dynamic exponent (1/z) values for many molecular crystalline thin films have been reported. In this study, the variation of scaling exponent values and consequent growth behaviors of molecular thin films were more quantitatively analysed using a (1+1)-dimensional surface lateral diffusion model. From these simulations, influence of step edge barriers and grain boundaries of molecular thin films on the various scaling exponent values were elucidated. The simulation results for the scaling exponents were also well consistent with the experimental data for previously reported molecular thin film systems.

Microstructure and Electrical Properties of $SiO_2$-Doped Zinc Oxide Varistors ($SiO_2$가 첨가된 산화아연 바리스터의 미세구조 및 전기적 특성)

  • 남춘우;정순철
    • Electrical & Electronic Materials
    • /
    • v.10 no.7
    • /
    • pp.659-667
    • /
    • 1997
  • The influence of SiO$_2$on the microstructure and electrical properties of zinc oxide varistor was investigated. Zn$_2$SiO$_4$third phase in the sintered body was found at grain boundaries, multiple grain junctions, and occasionally within ZnO grains. This phase acted as a grain growth inhibitor, which retard the grain growth of the ZnO matrix by impeding migration on the grain boundaries. As SiO$_2$ addition increases, average grain size decreased from 40.6${\mu}{\textrm}{m}$ to 26.9${\mu}{\textrm}{m}$ due to the pinning effect by Zn$_2$SiO$_4$ and drag effect by Si segregation at grain boundaries, the breakdown voltage consequently increased. When SiO$_2$ addition is increased, interface state density decreased, however, the barrier height increased by decrease of donor concentration, as a result, the nonlinear exponent increased and leakage current decreased. While, as SiO$_2$ addition increase, it was found that the apparent dielectric loss factor shows a tendency of decrease. Wholly, electrical properties of zinc oxide varistor can be said to be improved by SiO$_2$addition.

  • PDF

Sintering and grain growth in binary forsterite(Mg$_2$SiO$_4$)/spinel (MgAl$_2$O$_4$) system

  • Kim, Sungjin;Han, Young-Hwan;Cho, Kyeong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • The binary forsterite($Mg_2SiO_4$)/spinel ($MgAl_2O_4$) system, a possible refractory for industrial applications, is investigated for their density and grain growth the same firing conditions as the each component material between $1400^{\circ}C$ and $1700^{\circ}C$ ($1650^{\circ}C$). The forsterite grain growth exponent is established to be equal to 5 for all compositions within this binary system. Generally; the spinel addition to forsterite inhibited the forsterite grain growth. The activation energies for the forsterite grain growth of the eight compositions(weight ratio of forsterite/spinel) within the binary system are determined to be: 952$\pm$79(95/5), 363$\pm$37(90/10), 219$\pm$21(80/20), 220$\pm$44(70/30), 112$\pm$16(50/50), 112$\pm$23(30/70), 198$\pm$26(10/90), and 121$\pm$12(5/95) KJ/mol. The more forsterite is contained within the binary system, the higher value the activation energy for forsterite grain growth. It is considered that the forsterite grain growth at the higher forsterite compositions are more inhibited by spinel than that of the lower forsterite compositions.

  • PDF

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

Sintering Characteristics of ZnO Powder Prepared by Precipitation Method (침전법으로 제조된 ZnO 분체의 소결특성)

  • 강상규;김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.404-410
    • /
    • 1993
  • The characterization and sintering behavior of ZnO powders prepared by precipitation method were investigated. ZnO powders were synthesized using the aqueous solutions of ZnCl2 and NH4OH as a precipitation agent, which were crystallized in the shape of plate-like. The grain growth of ZnO(0.68${\mu}{\textrm}{m}$, 1.3${\mu}{\textrm}{m}$ and 3.4${\mu}{\textrm}{m}$) has been studied for temepratures from 100$0^{\circ}C$ to 130$0^{\circ}C$, and the rate of densification was inversely proportional to the ZnO particle size. Densification proceeded slowly by diffusion mechanisms above at 100$0^{\circ}C$. In this work, the grain growth kinetic exponent(n) was 3. The temperature dependence of ZnO grain growth was plotted, and the activation energy of grain growth was 75~85Kcal/mol.

  • PDF

A Study on the Effects of $TiO_2$ and $Al(OH)_3$ for ZnO Ceramic Varistor (ZnO Ceramic Varistor에 미치는 $TiO_2$$Al(OH)_3$의 영향)

  • 안영필;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.287-292
    • /
    • 1982
  • Nonohmic properties of ZnO ceramics with various small amounts of additives were studied in relation to experimental methods, additive contant and sintaring temperature. The kinds of additives used to following chemicals were basic additives ($0.5Bi_2O_3$, $0.3BaCO_3$, $0.5MnCO_3$, $0.5Cr_2O_3$, $0.1KNO_3$), $TiO_2$ and $Al(OH)_3$. Expecially, this study has focused on the effectsof $TiO_2$ and $Al(OH)_3$ in ZnO ceramics with the basic additives. SEM studies indicated that the addition of TiO2 promoted grain growth but retarded grain growth with the addition of $Al(OH)_3$. Also, in the case of calcination of ZnO with $TiO_2$ and ZnO with $Al(OH)_3$ previously, grain size of ZnO with $TiO_2$ was larger and that of ZnO with Al(OH)3 was smaller in comparison to the case with out calcination. From the viewpoint of nonohmic exponent and nonohimic resistance, electrical characteristics of ZnO, $TiO_2$ and the basic additives was more effective than that of ZnO, $Al(OH)_3$ and the basic additives. Nonohmic exponent and nonohmic resistance of ZnO, $TiO_2$ and the basic additives was 11-13 and 40-65 respectively.

  • PDF

Influence of Dysprosia Addition on Microstructure and Electrical Properties of Praseodymia-based Zinc Oxide Varistors

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.144-148
    • /
    • 2005
  • The microstructure and electrical properties of varistor ceramics, which are composed of Zn-Pr­Co-Cr-Dy-oxide system, were investigated at various dysprosia $(Dy_2O_3)$ addition contents. The $DY_2O_3$ microstructurally played the role of inhibition for the densification and grain growth. As the $DY_2O_3$ content increased, the density decreased in the range of $5.51-4.90 g/cm^3$, reaching maximum at $0.5 mol\%$ and the average ZnO grain size decreased in the range of $17.7-6.0{\mu}m$. The incorporation of $DY_2O_3$ significantly improved the nonlinear properties of varistors, above 30 in nonlinear exponent, compared with that without $DY_2O_3$. The varistors with the best performance of nonlinear properties was obtained $DY_2O_3$ content of $1.0 mol\%$, 49 in nonlinear exponent and $0.5{\mu}A$ in leakage current.