Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: III. Prediction Model for the Austenite Grain Growth Considering the Influence of Initial Austenite Grain Size in Weld HAZ of Precipitates Free Low Alloyed Steel

용접 열영향부 미세조직 및 재질 예측 모델링 : III. 석출물 - Free 저합금강의 초기 오스테나이트 결정립크기의 영향을 고려한 용접 열영향부 오스테나이트 결정립성장 예측 모델

  • 엄상호 (포스코 기술연구소 접합연구 그룹) ;
  • 문준오 (한양대학교 신소재공학부) ;
  • 정홍철 (포스코 기술연구소 접합연구 그룹) ;
  • 이종봉 (포스코 기술연구소 접합연구 그룹) ;
  • 이창희 (한양대학교 신소재공학부)
  • Published : 2006.08.01

Abstract

The austenite grain growth model in low alloyed steel HAZ without precipitates was proposed by analyzing isothermal grain growth behavior. Steels used in this study were designed to investigate the effect of alloying elements. Meanwhile, a systematic procedure was proposed to prevent inappropriate neglect of initial grain size (D0) and misreading both time exponent and activation energy for isothermal grain growth. It was found that the time exponent was almost constant, irrespectively of temperature and alloying elements, and activation energy increased with the addition of alloying elements. From quantification of the effect of alloying elements on the activation energy, an isothermal grain growth model was presented. Finally, combining with the additivity rule, the austenite grain size in the CGHAZ was predicted.

Keywords

References

  1. Joonoh Moon, Changhee Lee: Journal of KWS, 23-4 August 2005, 17
  2. D. B. Santos, R. K. Bruzszek, P. C. M. Rodrigues, E. V. Pereloma, Materials Science and Engineering, A346(2003), 189-195
  3. H. Hu and B. B. Rath: Metall. Trans., 1(1970), 3181
  4. P. A. Beck, J. C. Kremer, L. J. Demer and M. L. Holzworth: Trans. AIME, 175(1948), 372
  5. R. A. Vandermeer and H. Hu: Acta Metall. Mater., 42(1994), 3071 https://doi.org/10.1016/0956-7151(94)90404-9
  6. P. A. Manohar, D. P. Dunne, T. Chandra and C. R. Killmore: ISIJ Int., 36(1996), 194 https://doi.org/10.2355/isijinternational.36.194
  7. S. Jiao, J. Penning, F. Leysen, Y. Houbaert and E. Aernoudt: ISIJ Int., 40(2000), 1035 https://doi.org/10.2355/isijinternational.40.1035
  8. R. E. Reed-Hill: Physical Metallurgy of Principles, 3rd ed., PWS, Boston, (1996)
  9. E. Nes, N. Ryum and O. Hunderi: Acta Metall., 33(1985), 11 https://doi.org/10.1016/0001-6160(85)90214-7
  10. T. O. Saetre and N. Ryum: Modelling of Coarsening and Grain Growth, ed. by C. S. Pande and S. P. Marsh, The Minerals, Metals & Materials Society, (1993), 281
  11. P. D. Hodgson and R. K Gibbs: Proc. Int. Sympo. On Mathematical Modelling of Hot Rolling of Steel, ed. by S. Yue, AIME, (1990), 12. C. M. Sellars and J. A. Whiteman: Met. Sci., 13(1979), 187 https://doi.org/10.1016/0036-9748(79)90290-4
  12. P. J. Alberry, B. Chew and W. K. C. Jones: Met. Technol., 4(1977), 317 https://doi.org/10.1179/030716977803292619
  13. R. A. Brandes and G. B. Brook: Smithells Metals Reference Book, 7th ed., Butterworths-Heinemann Ltd., Oxford, (1992)
  14. K. Easterling: Introduction to the Physical Metallurgy of Welding, Butterworths, London, (1983)
  15. T. G. F. Gray, J. Spence and T. H. North: Rational Welding Design, Newnes-Butterworths, (1975)