Browse > Article

Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: III. Prediction Model for the Austenite Grain Growth Considering the Influence of Initial Austenite Grain Size in Weld HAZ of Precipitates Free Low Alloyed Steel  

Uhm, Sang-Ho (POSCO Technical Research Lab)
Moon, Joon-Oh (Div. of Mater. Sci. and Eng., Hanyang Univ.)
Jeong, Hong-Chul (POSCO Technical Research Lab)
Lee, Jong-Bong (POSCO Technical Research Lab)
Lee, Chang-Hee (Div. of Mater. Sci. and Eng., Hanyang Univ.)
Publication Information
Journal of Welding and Joining / v.24, no.4, 2006 , pp. 39-49 More about this Journal
Abstract
The austenite grain growth model in low alloyed steel HAZ without precipitates was proposed by analyzing isothermal grain growth behavior. Steels used in this study were designed to investigate the effect of alloying elements. Meanwhile, a systematic procedure was proposed to prevent inappropriate neglect of initial grain size (D0) and misreading both time exponent and activation energy for isothermal grain growth. It was found that the time exponent was almost constant, irrespectively of temperature and alloying elements, and activation energy increased with the addition of alloying elements. From quantification of the effect of alloying elements on the activation energy, an isothermal grain growth model was presented. Finally, combining with the additivity rule, the austenite grain size in the CGHAZ was predicted.
Keywords
Austenite grain growth; Heat Affected Zone; Modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. B. Santos, R. K. Bruzszek, P. C. M. Rodrigues, E. V. Pereloma, Materials Science and Engineering, A346(2003), 189-195
2 H. Hu and B. B. Rath: Metall. Trans., 1(1970), 3181
3 S. Jiao, J. Penning, F. Leysen, Y. Houbaert and E. Aernoudt: ISIJ Int., 40(2000), 1035   DOI   ScienceOn
4 K. Easterling: Introduction to the Physical Metallurgy of Welding, Butterworths, London, (1983)
5 T. G. F. Gray, J. Spence and T. H. North: Rational Welding Design, Newnes-Butterworths, (1975)
6 P. J. Alberry, B. Chew and W. K. C. Jones: Met. Technol., 4(1977), 317   DOI   ScienceOn
7 P. A. Manohar, D. P. Dunne, T. Chandra and C. R. Killmore: ISIJ Int., 36(1996), 194   DOI
8 R. E. Reed-Hill: Physical Metallurgy of Principles, 3rd ed., PWS, Boston, (1996)
9 R. A. Vandermeer and H. Hu: Acta Metall. Mater., 42(1994), 3071   DOI   ScienceOn
10 E. Nes, N. Ryum and O. Hunderi: Acta Metall., 33(1985), 11   DOI   ScienceOn
11 Joonoh Moon, Changhee Lee: Journal of KWS, 23-4 August 2005, 17
12 P. A. Beck, J. C. Kremer, L. J. Demer and M. L. Holzworth: Trans. AIME, 175(1948), 372
13 T. O. Saetre and N. Ryum: Modelling of Coarsening and Grain Growth, ed. by C. S. Pande and S. P. Marsh, The Minerals, Metals & Materials Society, (1993), 281
14 R. A. Brandes and G. B. Brook: Smithells Metals Reference Book, 7th ed., Butterworths-Heinemann Ltd., Oxford, (1992)
15 P. D. Hodgson and R. K Gibbs: Proc. Int. Sympo. On Mathematical Modelling of Hot Rolling of Steel, ed. by S. Yue, AIME, (1990), 12. C. M. Sellars and J. A. Whiteman: Met. Sci., 13(1979), 187   DOI   ScienceOn