• Title/Summary/Keyword: Grain boundary fracture

Search Result 123, Processing Time 0.023 seconds

Micro-damage Process in Granite Under the State of Water-saturated Triaxial Compression (수침삼축압축하에서 관찰되는 화강암의 미세 파괴)

  • Yong Seok Seo;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.243-251
    • /
    • 1999
  • Granitic rock, by its nature, contains numerous micro-discontinuities including grain boundary, microcracks, microcavities and mineral cleavages. The brittle fracture of rock is a progressive procedure in which the failure occurs with prior microcracking. In this paper, initiation, propagation and interaction of microcracks are considered to be the dominant, controlling micromechanisms of macroscopic failure. The authors show a few patterns of microcrack initiation and propagation by using sequential photographs of water-saturated granite taken under triaxial compressive state. The failure process was observed directly and continuously by a newly developed triaxial compressive test system.

  • PDF

Effect of SiO2 Addition on Sintering Characteristics in Ytrriastabilized Zirconia Ceramics (이트리아 안정화 지르코니아 소결체의 특성에 SiO2첨가가 미치는 영향)

  • 김상희;최시영;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.6
    • /
    • pp.601-608
    • /
    • 1988
  • The effect of SiO2 addition on sintering characteristics of 8 mole percent yttria-stabilized zirconia ceramics is investigated. As the addition of SiO2 is increased, sinterbility, microstructure, and Vickers hardness of the zirconia ceramic increased but fracture toughness and electrical conductivity are decreased. It is considered that the electrical conductivity decrease with the increase of SiO2 is due to the decrease of defect concentration of ionized oxygen. From the complex impedance measurement, it is shown that the influence of SiO2 is more dominant at the resistivity of bulk region than of grain boundary region.

  • PDF

Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet (YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성)

  • 이영일;김영욱;최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

Properties of $\beta$-Sialon Prepared from Korean Natural Resources (한국산 천연원료로부터 $\beta$-Sialon의 합성 및 그 특성)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.3
    • /
    • pp.402-408
    • /
    • 1989
  • $\beta$-Sialon powder was synthesized by the simultaneous reduction and nitridation of the mixed powder of Hadong kaolin and Kimcheon quartzite, using graphite as a reducing agent. The synthesized $\beta$-Sialon powder (Z=1) was hot-pressed at 175$0^{\circ}C$, for 90min under 30MPa in N2 atmosphere, after Yttria and YAG composition material were added as sintering agents. The effects of grain-boundary crystallization on high-temperature mechanical properties of $\beta$-Sialon ceramics were investigated. Strength degradation was observed at above 1,00$0^{\circ}C$ for the $\beta$-Sialon (Z=1)-8wt% Y2O3 composition, but it was not observed up to 1,20$0^{\circ}C$ for the $\beta$-Sialon-8wt% YAG composition which was annealed at 1,40$0^{\circ}C$ for 4 hours in N2 atmosphere. After the $\beta$-Sialon-8wt% YAG composition was annealed, the decrease of fracture toughness was observed.

  • PDF

The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy (저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향)

  • Kwon, S.H.;Park, J.H.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

Evaluation of the Microstructures and Mechanical Properties on Friction Welded A6063 Alloy (마찰접합 된 A6063 합금의 미세조직과 기계적 특성 평가)

  • Kim, Eun-Hye;Cho, Hyung-Hwan;Song, Kuk-Hyun
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.276-280
    • /
    • 2017
  • This study was carried out to evaluate the developed microstructures and mechanical properties of friction welded A6063 alloy. For this work, specimens were prepared at a size of 12 mm ${\O}{\times}80mm$, and friction welding was carried out at a rotation speed of 2,000 RPM, friction pressure of $12kgf/cm^2$ and upset pressure of $25kgf/cm^2$. To perform an analysis of the grain boundary characteristic distributions, such as the grain size, orientation and misorientation angle distributions, the electron back-scattering diffraction method was used. In addition, in order to identify the dispersed intermetallic compounds of the base and welded materials, transmission electron microscopy was used. The experimental results found that the application of friction welding on A6063 led to significant grain refinement of the welded zone relative to that of the base material. Besides this, intermetallic compounds such as AlMnSi and $Al_2Cu$ were found to be dispersed with more refined size relative to that of the base material. This formation retains the mechanical properties of the welds, which results in the fracture aspect at the base material zone. Therefore, based on the developed microstructures and mechanical properties, the application of friction welding on A6063 could be used to obtain a sound weld zone.

Elevated Temperature Creep Behavior of Rapidly Solidified Al-9.45wt%Fe-4.45wt%Cr Alloy (급냉응고된 Al-9.45wt%Fe-4.45wt%Cr합금의 고온 크?거동)

  • Rhim, J.K.;Kim, K.H.;Kim, T.S.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.208-215
    • /
    • 1999
  • The creep behavior of a rapidly solidified and consolidated Al-9.45wt%Fe-4.45wt%Cr alloy were investigated in the stress range 40 to 115 MPa and temperature range 300(0.53Tm) to 441$^{\circ}C$(0.66Tm). It is of use to available aerospace and automobile industries for the improved performance of materials used at high temperature. Because Al alloys with improved creep resistance offer the potential for lower weight and reduced costs in aerospace and automobile components (e.g., structural members and engine parts) through the replacement of heavier and more costly materials, the safety in use at high temperature is good. The alloy is characterized by high stress exponents and activation energies for creep, which are greatly dependent on the stress and temperature. Because the creep stress is seen to cause a strongly significant enhancement of coarsening, the coarsening rate of the dispersed particles in all crept specimens is faster than that in isothermally annealed specimens. Dislocations connecting dispersoids are observed more cofrequently in crept specimens with higher stress and lower temperature. The creep strain rates in the power law creep regime were found to be predicted much better by the Shorty and Rosler/Arzt equation with the inclusion of a threshold stress and dislocation detachment mechanism. The dispersoids in this alloy were acting a source of void nucleation that finally leaded to ductile fracture within the grain so called intergranular. Each void was initiated, grown and failed at the dispersoids in the aluminium matrix. Grain boundary accommodation of the slip produced, which result in initiation of the void and then final transgranular fracture. Therefore, it was confirmed that these dispersoids played an important role in the fracture mechanism by the formation of $Al_{13}Fe_4$, $Al_{13}Cr_2$ and $Al_2O_3$.

  • PDF

Improvement in Mechanical Properties of Cast Magnesium Alloy through Solid-solution Hardening and Grain Refinement (고용 강화 및 결정립 미세화를 통한 마그네슘 합금 주조재의 기계적 물성 향상)

  • Kim, Sang-Hoon;Moon, Byoung-Gi;You, Bong-Sun;Park, Sung-Hyuk
    • Journal of Korea Foundry Society
    • /
    • v.37 no.6
    • /
    • pp.207-216
    • /
    • 2017
  • This study investigated the effects of the addition of Zn, Ca, and SiC on the microstructure and mechanical properties of Mg-Al alloys. The tensile properties of homogenized Mg-xAl (x = 6, 7, 8, and 9 wt.%) alloys increased with increasing Zn content by the solid-solution strengthening effect. However, when the added Zn content exceeded the solubility limit, the strength and ductility of the alloys decreased greatly owing to premature fracture caused by undissolved coarse particles or local melting. Among the Mg-xAl-yZn alloys tested in this study, the AZ74 alloy showed the best tensile properties. However, from the viewpoints of the thermal stability, castability, and tensile properties, the AZ92 alloy was deemed to be the most suitable cast alloy. Moreover, the addition of a small amount (0.17 wt.%) of SiC reduced the average grain size of the AZ91 alloy significantly, from $430{\mu}m$ to $73{\mu}m$. As a result, both the strength and the elongation of the AZ91 alloy increased considerably by the grain-boundary hardening effect and the suppression of twinning behavior, respectively. On the other hand, the addition of Ca (0.5-1.5 wt.%) and a combined addition of Ca (0.5-1.5 wt.%) and SiC (0.17 wt.%) increased the average grain size of the AZ91 alloy, which resulted in a decrease in its tensile properties. The SiC-added AZ92 alloy exhibited excellent tensile properties (YS 125 MPa, UTS 282 MPa, and EL 12.3%), which were much higher than those of commercial AZ91 alloy (YS 93 MPa, UTS 192 MPa, and EL 7.0%). The fluidity of the SiC-added AZ92 alloy was slightly lower than that of the AZ91 alloy because of the expansion of the solid-liquid coexistence region in the former. However, the SiC-added AZ92 alloy showed better hot-tearing resistance than the AZ91 alloy owing to its refined grain structure.

Effect of Brazing Condition on Tensile Properties in Brazing Joints of Inconel-625/Ni-201 Using MBF-30 (MBF-30을 사용한 Inconel-625/Ni-201 브레이징 접합부의 인장성질에 미치는 접합조건의 영향)

  • Yu, Jeong-Woo;Park, Sang-Hyun;Kim, Chang-Su;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.106-112
    • /
    • 2012
  • This study was carried out to investigate the effect of bonding temperature and holding time on microstructure and mechanical properties in brazing joints of Ni-base superalloy using MBF-30 (Ni-4.5Si-3.2B [wt.%]). The heating rate was $20^{\circ}C$/min to the bonding temperatures $1050^{\circ}C$, $1070^{\circ}C$, $1090^{\circ}C$ under high vacuum condition. The holding times were 100s, 400s, 900s and 1600s. $Ni_3B$ phases and proeutectic Ni were observed in the interlayer of Ni-201. Then, Ni3B and Ni3Si were found in the middle region of brazing joint. Cr-boride phase appeared in the interlayer of Inconel-625. Tensile strength and elongation were decreased at $1050^{\circ}C$-1600s, $1070^{\circ}C$-900s and $1090^{\circ}C$-400s. After observation the fracture specimens, There was Ni3B which is very brittle phase in the grain boundary of Ni201.