• Title/Summary/Keyword: Grain Sorghum

Search Result 87, Processing Time 0.028 seconds

Yield Comparisons of Different Methods of Waxy Fraction Extraction from Grain Sorghum

  • Weller, Curtis L.;Hwang, Keum-Taek;Schmidt, Bradley J.
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.786-791
    • /
    • 2006
  • Three solvent extraction techniques were used to recover waxy tractions from grain sorghum kernels. Yield and chemical composition of the waxy tractions obtained by reflux, bench scale (recirculated solvent), and countercurrent extraction methods were compared. Waxy traction yield from countercurrent extraction (0.200%) was significantly greater (p<0.05) than the yields of wax from both reflux (0.184%) and bench-scale (0.179%) methods. The waxy traction extracted using the bench-scale method showed the greatest relative amount of long-chained (primarily C:28 and C:30) alcohols while the countercurrent-extracted wax showed the greatest relative amount of long-chained fatty acids and fatty aldehydes. Countercurrent extraction removed a higher additive percentage of fatty aldehydes, acids, and alcohols than reflux or bench-scale extraction method.

Effects of Cellulase Enzymes and Bacterial Feed Additives on the Nutritional Value of Sorghum Grain for Finishing Pigs

  • Kim, I.H.;Hancock, J.D.;Hines, R.H.;Kim, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.5
    • /
    • pp.538-544
    • /
    • 1998
  • One hundred and twenty-eight finishing pigs (51.3 kg average initial body weight) were used to determine the effects of adding cellulase enzymes and lactobacillus acidophilus to sorghum-based diets on growth performance, carcass merit, and nutrient digestibility in finishing pigs. Treatments were: 1) corn-soybean meal-based positive control; 2) sorghum-soybean meal-based negative control; 3) Diet 2 with celluloytic enzymes; and 4) Diet 2 with a bacterial feed additive (lactobacillus acidophilus). There was a trend for greater average daily gain (ADG) in pigs fed com versus the sorghum treatments for day 0 to 28 (p < .09), but there was no effect of treatment (p > .15) on overall ADG (i.e., day 0 to 63). Feed consumption was not affected by treatment during the experiment (p > .19). Pigs fed the corn-soybean meal-based diet had 3.5% greater overall gain/feed than pigs fed the other diets (p < .009). Dressing percentage was not affected by treatment (p > .22), but there was a trend for backfat thickness at the last rib to be greater for pigs fed com versus the sorghum treatments (p < .09). Pigs fed the sorghum treatments had 1 % greater fat free lean index (p < .10) compared to pigs fed the corn-soybean meal-based positive control. Pigs fed com had greater apparent digestibilities of DM, N, and GE than pigs fed the sorghum treatments (p < .03), and greater DE intake (p < .07) suggesting that the increased carcass fatness for pigs fed the corn-based control diet resulted from greater energy status of those pigs. In conclusion, pigs fed the corn-soybean meal-based control diet had no improved growth performance but tended to be fatter than pigs fed sorghum. Adding cellulolytic enzymes or a bacterial feed additive to diets for finishing pigs did not affect growth performance, carcass merit, or nutrient utilization.

Enhancement of flood stress tolerance for upland-adapted cereal crops by the close mixed-planting with rice

  • Iijima, Morio;Awala, Simon K;Hirooka, Yoshihiro;Yamane, Koji
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.44-44
    • /
    • 2017
  • Recently, the occurrences of extreme flooding and drought, often in the same areas, have increased due to climate change. We tested the hypothesis that wetland species could help upland species under flood conditions; that is, the roots of wetland crops may supply $O_2$ to the roots of upland crops by a series of experiments conducted in both humid Japan and semi-arid Namibia (See Iijima et al, 2016 and Awala et al, 2016). Firstly, flooding tolerance of upland-adapted staple crops-pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) mix-cropped with rice (Oryza spp.) was investigated in glasshouse and laboratory experiments in Japan. We found a phenomenon that strengthens the flood tolerance of upland crops when two species-one wetland and one drought tolerant-were grown using the mixed cropping technique that results in close tangling of their root systems, hereinafter referred to "close mixed-planting". This technique improved the photosynthetic and transpiration rates of the upland crops subjected to flood stress ($O_2$-deficient nutrient culture). Oxygen transfer was suggested between the two plants mix-cultured in water, implying its contribution to the phenomenon that improved the physiological status of upland crops under the simulated flood stress. Secondly, we further tested whether this phenomenon would be expressed under field flood conditions. The effects of close mixed-planting of pearl millet and sorghum with rice on their survival, growth and grain yields were evaluated under controlled field flooding in semi-arid Namibia during 2014/2015-2015/2016. Single-stand and mixed plant treatments were subjected to 11-22 day flood stress at the vegetative growth stage. Close Mixed-planting increased seedling survival rates in both pearl millet and sorghum. Grain yields of pearl millet and sorghum were reduced by flooding, in both the single-stand and mixed plant treatments, relative to the non-flooded upland yields, but the reduction was lower in the mixed plant treatments. In contrast, flooding increased rice yields. Both pearl millet-rice and sorghum-rice mixtures demonstrated higher land equivalent ratios, indicating a mixed planting advantage under flood conditions. These results indicate that mix-planting pearl millet or sorghum with rice could alleviate flood stress on dryland cereals. The results also suggest that with this cropping technique, rice could compensate for the dryland cereal yield losses due to field flooding. Mixed cropping of wet and dryland crops is a new concept to overcome flood stress under variable environmental conditions.

  • PDF

Effects of Green Manure on Soil Properties and Grain Yield of Sorghum (Sorghum bicolor Moench) (수수 재배 시 풋거름작물 이용이 토양특성 변화와 수수의 수량에 미치는 영향)

  • Kim, Sung-Kook;Jung, Gun-Ho;Shin, Sung-Hyu;Kim, Min-Tae;Kim, Chung-Guk;Shim, Kang-Bo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.4
    • /
    • pp.290-296
    • /
    • 2016
  • Green manure has been used as alternative to chemical fertilizer. To evaluate the effect of green manure on the chemical properties of top-soil and sorghum yield, hairy vetch (Vicia villosa Roth, HV), manure barley (MB), and a mixture of hairy vetch and manure barley (HV+MB) were incorporated into the soil at a rate of $100kg-N\;N\;ha-1$ before the sorghum was transplanted. Total biomass of sorghum grown in the HV, MB, and HV+MB treatments was 13.1, 31.6, and $25.2t\;ha^{-1}$, respectively, and the nitrogen production of the treatments was 81, 74, and $145kg\;ha^{-1}$, respectively. The SPAD value of the uppermost leaf of sorghum plants grown in the soils with HV, MB, or HV+MB were very similar until heading stage; however, at maturity, the SPAD value of sorghum cultivated in the soils with HV was lower than that of sorghum in the soils with MB or HV+MB. This could be because the nitrogen release from HV was too rapid to supply nitrogen to sorghum during the later stage of grain filling. Compared with chemical fertilizers, the incorporation of green manure increased the pH, exchangeable cations ($K^+$, $Mg{^{+}^{+}}$, and $Ca{^{+}^{+}}$), and total nitrogen in soil postharvest, indicating an improvement in soil chemical properties. Total carbon content increased in soil with green manure incorporated, but decreased in the chemical fertilized soil, suggesting that sorghum cultivation using green manure may sequester carbon in soils. The yield of sorghum cultivated with green manure was not different from the yield of sorghum cultivated with chemical fertilizers. These results suggest that the mixture of hairy vetch and manure barley can be a useful chemical fertilizer alternative in sorghum cultivation.

Feed Value of Pearl Millet [Pennisetum americanum(L.) Leeke] Grown as a New Forage Crop (진주조의 사료적 가치)

  • Park, Keun-Yong;Choi, Byung-Han;Kang, Young-Kil;Moon, Hyeon-Gui;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.48-53
    • /
    • 1988
  • Pearl millet has been detected as a promising new forage crop of excellent quality and productivity since 1985. Its green fodder yields were 10.7 to 12.8 tons per hectare in average of 26 accessions in Suwon, 1985. The yield level was much higher than those of Italian and pro so millets and com. Com was better than Italian and proso millets, and proso millet was better than Italian millet for a green fodder crop. Suwon 1 pearl millet hybrid was the best of the 13 hybrids examined in Suwon, 1986 being 149 tons per hectare of three times cut green fodder yields. The pearl millet hybrid was higher in green fodder yield than com and sorghum/sudan grass hybrids. Leaf area index was 32.4 for the three times cut pearl millet, while 5.8 for the one time cut corn, and 20.8 for the three times cut sorghum/sudan grass. Crude protein content was 16.3 percent for pearl millet being six to five percent higher than corn and sorghum/sudan grass, 11.8 percent for the one time cut at maturity and 16.1 percent for four times cut being higher than corn and sorghum/sudan grass. Crude fat content was 3. percent for pear 1 millet grain being some what higher than corn and sorghum/sudan grass and 1.3-1.4 percent for green fodder crop. Crude fiber content in grain was 1.9 percent for pearl millet 2.6 percent for corn, and 4.3 percent for sorghum/sudan grass. Crude fiber content in pearl millet plant was 24.4 to 26.8 percent, Crude ash content was 2.4 percent in grain and 10.8 to 11.6 percent in the plants of pearl millet hybrid. In vitro digestibility of grain was 93.7 percent for pearl millet, 95.4 percent for corn, and 55.8 percent for sorghum/sudan grass. The digestibility of whole plant was 57.6 to 63.4 percent for pearl millet, 46.3 percent for corn, and 47.3 to 57.6 percent for sorghum/sudan grass. Heavier nitrogen fertilizer applications increased green fodder yields, protein content and digestibility, but reduced fat and ash content of pearl millet inbred line T 186.

  • PDF

Forage Yield and Quality of Summer Grain Legumes and Forage Grasses in Cheju Island

  • Kang, Young-Kil;Cho, Nam-Ki;Yook, Wan-Bang;Kang, Min-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.245-249
    • /
    • 1998
  • Soybean [Glycine max (L.) Merr.), mungbean [Vigna radiata (L.) Wilcz.], cowpea [V. unguiculata (L.) Walp.], adzuki bean [V. angularis (Willd.) Ohwi & Ohashi], maize [Zea mays L.], sorghum [Sorghum bicolor (L.) Moench], sorghum $\times$ sudangrass [So bicolor intraspecific hybrid], and Japanese millet [Echinochloa crusgalli var. frumentacea (Link) W.F. Wight] were grown at two planting dates (18 June and 15 July) at Cheju in 1997 to select the best forage legumes adapted to Cheju Island for grass-legume forage rotation. Averaged across planting dates and cultivars, dry matter (DM), crude protein (CP), and total digestible nutrient (TDN) yields were 5,646, 1,056, and 3,637 kg/ha for soybean, 4,458, 676, and 2,661 kg/ha for mungbean, 3,289, 553, and 2,055 kg/ha for cowpea, 3,931, 674, and 2,489 kg/ha for adzuki bean, 12,695, 969, and 7,642 kg/ha for maize, 17,071, 1,260, and 8,857 kg/ha for sorghum, 16,355, 1,163, and 8,543 kg/ha for sorghum $\times$ sudangrass hybrid, and 8,288, 929, and 4,091 kg/ha for Japanese millet. Soybean was higher in CP, ether extract (EE), and TON content but was lower in nitrogen free extract content compared with the three other legumes. The legumes had much higher CP (13.7 to 21.9%), EE (2.42 to 6.23%), and TDN (58.7 to 69.9%) content but lower in crude fiber (CF) content (17.3 to 25.3%) than did the grasses tested except maize which had relatively lower CF content but higher TDN content. These results suggest that soybean could be the best forage legume for grass-legume forage rotation in the Cheju region.

  • PDF

Effects of BMR Variety and Corn Grain (Grounded) Supplement on Silage Quality of Sorghum × Sudan Hybrids (수수 · 수단그라스 사일리지 제조에 있어 BMR 품종과 파옥쇄 첨가 효과)

  • Kwon, Chan Ho;Kim, Eun Joong;Cho, Sangbuem
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • The present study was conducted to evaluate the productivity of $Sorghum{\times}sudangrass$ (SX17) hybrid and BMR (brown mid rib) $Sorghum{\times}sudangrass$ hybrid and silage quality of these forages with corn grain supplementation. The effect of corn grain supplementation on the quality of silages was also investigated. No remarkable differences at growth characteristics and productivities in two hybrids were found. Sugar content, however, in stem of BMR hybrid showed significantly great (p<0.05) and the difference between two hybrids was about $2B^{\circ}$. Ratio of lactic acid in total organic acid in BMR hybrid (82.8%) was significantly greater than the control (SX17 hybrid) (78.5%) (p<0.05). Ratio of butyric acid in total organic acid in SX17 hybrid (18.5%) was significantly greater than BMR hybrid (9.8%) (p<0.05). According to the result of organic acid ratio, it could be assumed that the use of BMR hybrid can improve silage quality. NDF and ADF contents in both SX17 and BMR hybrids were significantly declined with increased corn grain supplementation (p<0.05). Different TDN values in SX17 (56.2) and BMR (57.1) hybrids were detected. However, TDN values of both SX17 and BMR hybrid silages were significantly elevated by increasing the proportion of ground corn (p<0.05).

Effect of different plant densities on growth and yield of sorghum(Sorghum bicolor L. Moench.)

  • Cho, Young Dae;Jung, Ki Yuol;Chun, Hyun Chung;Lee, Sang Hun;Kang, Hang Won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.206-206
    • /
    • 2017
  • Sorghum is a crop with a various plant height depending on the planting density. If the height exceeds 1.8m, which is the harvestable height of the combine, loss is caused by clogging of the installation, entrance of the threshing section and the threshing section. The purpose of this study is to set the planting distance and number of plants per hill suitable for combine harvesting as the plant length does not exceed 1.8m. The experimental variety was Nampungchal. The experiment design was a split-plot design with three replications. The treatments were as follow: Main-plot were 1 and 2 plants as number of plants per hill and sub-plots were $60{\times}20cm$ (practice), $70{\times}15$, 20, 25, 30 cm as planting distance. The amount of nitrogen, phosphate and potassium fertilization were 100, 70, $80kg\;ha^{-1}$. Data were collected: (1) grain yield: weight of grain in $kg\;ha^{-1}$, (2) 1000 grain weight: average weight of 1000 grain, (3) plant height: distance from soil to top of panicle, (4) ear length: distance from top of stem to top of ear in cm, (5) stem diameter: diameter of second internode, (6) tiller number per hill. Analyses of variance were performed using R version 3.3.1(https://www. r- project. org). The Duncan's multiple range test(DMR) was used to separate treatment means at P < 0.05. As number of plants per hill increased, plant height and yield increased and tiller number decreased. As planting distance increased, plant height and yield decreased and tiller number increased. At 1 plant per hill, the plant height did not exceed 1.8m at all planting distance. At 2 plants per hill, the plant height did not exceed 1.8m from the planting distance of $70{\times}25cm$. At 1 plant per hill, the tiller number increased to 0.23, 0.27, 0.60 and 0.70 as the planting distance increased to $70{\times}15$, 20, 25 and 30 cm, respectively. At 2 plants per hill, the tiller number increased to 0.03, 0.03, 0.14 and 0.40 as the planting distance increased to $70{\times}15$, 20, 25 and 30 cm, respectively. At 1 plant per hill, the yield decreased to 6030, 4280, 3400 and $3230kg\;ha^{-1}$ as the planting distance increased. At 2 plant per hill, the yield decreased to 7850, 5770, 5720 and $4960kg\;ha^{-1}$ as the planting distance increased. We recommend that the optimum number of plants per hill and planting distance is 2 and $70{\times}25cm$ suitable for combine harvesting.

  • PDF

Studies of Organic Forage Production System for Animal Production in Korea (한국의 가축 생산성 향상을 위한 유기조사료 생산체계에 관한 연구)

  • Kim, Jong-Duk;Kim, Jong-Kwan;Kwon, Chan-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.155-166
    • /
    • 2014
  • Organic forage production system is one of the most important aspects in organic livestock production. Animals in the organic farming system are also essential for manure to be used for organic forage production. Both organic forage and animals are essential to maintain the cycle of organic agriculture system. In this paper we introduce the organic forage production system in Korea. Summer and winter crops are getting popular in Korea because of their high forage yield and cultivation in double cropping systems. Common cropping system for forage production in Korea is the double cropping system with legume and grass mixture. Forage sorghum and sudangrass are the most popular ones of annual summer forage corps because of their high production with low cost in the double cropping systems. In the mixture of forage crops, inter cropping is more suitable in the corn and sorghum cropping system because of high lodging resistance and forage yield, and low weed population. Forage sorghum and sudangrass are difficult to preserve as direct-cut silage due to the fact that its high moisture content causes excessive fermentation during ensiling. Corn grain addition to sorghum silage could be recommended as the most effective treatment for increasing quality and reducing production cost. It is recommended that corn grain could be added up to 10% of total amount of silage. And agriculture by-products also can be added at the time of ensiling to minimize losses of effluent and have the additional advantage of increasing quality. Agriculture by-products as silage supplements increased DM content and quality, and decreased the production cost of sorghum silage. Field pre-wilting treatment of forage crops also increased DM content and quality of the silage. Wilting sorghum${\times}$sudangrass hybrid before ensiling was the effective method for reducing effluent and increasing pH and forage quality more than direct cut silage. Optimum prewilting period of sudangrass silage was 1 or 2 days. In organic forage, the most important factor is the enhancement of organic forage sufficiency in relation to the environmental-friendly and organic livestock. Consequently, there are many possibilities for animal production and organic forage production in Korea. No forages no cattle concept should be emphasized in organic farming system.

Antioxidant and Antimicrobial Activities of Sorghum Germplasms Introduced from USA (미국 도입 수수 유전자원의 항산화활성과 항균활성)

  • Goh, Eun-Jeong;Yoo, Ji-Hye;Seong, Eun-Soo;Lee, Jae-Geun;Hwang, In-Seong;Kim, Nam-Jun;Yu, Chang-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.193-199
    • /
    • 2012
  • This study was carried out to evaluate the agronomic characteristics and biological activities of $Sorghum$ $bicolor$ germplasms introduced from USA. Plant height, stem diameter, tiller number, leaf length, leaf width, leaf vein color, ear type, ear length and ear width have different from the cultivated accessions. Sweet-N-Sterile (#4) showed the tallest height, widest ear-width and stem diameter. Most of $Sorghum$ $bicolor$ plants may be available to use for bio-energy from these results showing big biomass. Antioxidant activities of 11 cultivars collected from USA were examined by DPPH assay and reducing power. Among the cultivars, Premium stock (#1), Early Sumac (#7), SS Silage (#9) and WGF Grain Sorghum (#11) showed a significantly higher antioxidant activity in comparison to others. Early Sumac (#7) and SS silage (#9) showed more strong reducing power activities than ${\alpha}$-tocopherol, a positive control. Premium stock (#1), Sweet-N-Sterile (#4), Early Sumac (#7) and SS Silage (#9) were also showed high antioxidant activities by DPPH assay and reducing power experiment. BMR Gold I (#3) displayed strong antimicrobial activity against $Escherichia$ $coli$ at minimum inhibitory concentrations (125 ${\mu}g$/ml).