• Title/Summary/Keyword: Grain Distribution

Search Result 1,005, Processing Time 0.188 seconds

A Review of the Applicability of The Fractal Dimension of Grain Size Distribution for a Analysis of Submarine Sedimentary Environments (프랙탈 차원을 이용한 해저 퇴적환경 분석 적용성 검토)

  • Noh, Soo-Kack;Son, Young-Hwan;Bong, Tae-Ho;Park, Jae-Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.43-50
    • /
    • 2011
  • The fractal method has recently been applied to a model for determining soil grain size distribution. The objective of this study is to review the applicability of the fractal method for a analysis of submarine sedimentary environments by comparing fractal constants with grain size statistical analysis for the soil samples of Pohang (PH) and Namhae (NH). The y-interception of log (grain size)-log (passing) equation was also used because grain size distribution couldn't be expressed with fractal dimension only. The result of comparison between fractal constants (dimension, y-interception) and grain size statistical indices, the fractal dimension was directly proportional to the mean and the sorting. And the y-interception showed high correlation with the mean. The fractal dimension and y-interception didn't show significant correlation with the skewness and the kurtosis. Thus regression equations between fractal constants and two statistical indices (mean, sorting) were derived. All classifications of the mean and the sorting could be determined using the regression equation based on the fractal dimension and y-interception. Therefore, fractal constants could be used as an alternative index representing the sedimentary environments instead of the mean and sorting.

Grain distribution and electrical property according to grain size variation in polysilicon TFTs (다결정 실리콘 TFT소자의 채널길이 변화에 따른 grain의 분포와 전기적 특성)

  • Lee, Eun-Nyung;Song, Ho-Young;Park, Se-Geun;Lee, Taek-Joo;O, Beom-Hoan;Lee, Seung-Gol;Lee, El-Hang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.128-131
    • /
    • 2003
  • The number of grain is determined based on Poisson distribution in respectively different active channel and it is converted to grain size which affects to the mobility and threshold voltage. the acquired data is applied to the SPICE for observing the variation of I-V characteristic with several channel lengths. we can confirm the effect on device.

  • PDF

3D Modeling of Ground Surface with Statistical Method (통계적방법을 이용한 연삭표면의 3차원모델링)

  • 김동길;김영태;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • This paper simulated surface grinding process with statistically simulated grinding wheel topography, considering ridge formation phenomenon when grain scratch workpiece. Wheel grain is modeled as hybrid sphere and cone. Grinding wheel characteristic was evaluated with stylus by expanding the scanning region of the profilometer from a straight line to a plane. Each grain's diameter and semi-angle are assumed as normal distribution, each grain's protrusion height from wheel plane is assumed gamma distribution. So grinding wheel is simulated with grain's position randomly distributed without overlapping. Ground surface is 3-dimensionally simulated considering ridge formation of workpiece by each grain's cutting, and then surface profile and surface roughness parameters are compared with real ground workpiece.

  • PDF

Directional Effect of Applied Pressure during the Sintering on the Microstructures and Fracture Toughness of Heat-treated Silicon Nitride Ceramics (소결시의 가압방식이 열처리 후 질화규소의 미세조직과 파괴인성에 미치는 영향)

  • 이상훈;박희동;이재도
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.653-658
    • /
    • 1995
  • Directional effect of applied pressure during sintering on the microstructure and fracture toughness of the heat-treated silicon nitride ceramics has been investigated. The specimens with a composition of 92Si3N4-8Y2O3(in wt%) were sintered at 172$0^{\circ}C$ by a hot press (HP ) and a hot isostatic press (HIP) and heat-treated for grain growth at 1800~20$0^{\circ}C$. The fracture toughness of the HP samples increased with the grain size while the fracture toughness of the HIP treated samples remained the same even though the grain growth occurred. This discrepancy was explained by a bimodal grain size distribution and large aspect ratio of the HPed samples and a monomodal grain size distributjion and samll aspect ratio of the HIP treated samples.

  • PDF

A simple approach to simulate the size distribution of suspended sediment (부유사 입경분포 모의를 위한 간편법)

  • Kwon, Minhyuck;Byun, Jisun;Son, Minwoo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.347-357
    • /
    • 2024
  • Numerous prior studies have delineated the size distribution of noncohesive sediment in suspension, focusing on mean size and standard deviation. However, suspensions comprise a heterogeneous mixture of sediment particles of varying sizes. The transport dynamics of suspended sediment in turbulent flow are intimately tied to settling velocities calculated based on size and density. Consequently, understanding the grain size distribution becomes paramount in comprehending sediment transport phenomena for noncohesive sediment. This study aims to introduce a straightforward modeling approach for simulating the grain size distribution of suspended sediment amidst turbulence. Leveraging insights into the contrast between cohesive and noncohesive sediment, we have meticulously revised a stochastic flocculation model originally designed for cohesive sediment to aptly simulate the grain size distribution of noncohesive sediment in suspension. The efficacy of our approach is corroborated through a meticulous comparison between experimental data and the grain size distribution simulated by our newly proposed model. Through numerical simulations, we unveil that the modulation of grain size distribution of suspended sediment is contingent upon the sediment transport capacity of the carrier fluid. Hence, we deduce that our simplified approach to simulating the grain size distribution of suspended sediment, integrated with a sediment transport model, serves as a robust framework for elucidating the pivotal bulk properties of sediment transport.

Characteristics of Grain Size Distribution of River Flooding Sediments in Ibang-myeon, Changnyeong and their Meaning (창녕 이방면 하천범람 퇴적물 입도분포 특성 및 그 의미)

  • Han, Min;Yang, Dong-Yoon;Lim, Jaesoo;Nahm, Wook-Hyun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.13-24
    • /
    • 2020
  • This study analyzed the characteristics of the grain size distribution of the sediments obtained from the flooding in Ibang-myeon, Changnyeong-gun, which was caused by the collapse of a embarkment on the Nakdong River on August 9, 2020. As a results, it was found that the mean grain size decreases and the sorting becomes poorer as the distance from the embarkment collapse point increases. This is attributed to the fact that the transport energy of the river decreases when flooding occurs, ensuring that coarse-grained sediments are deposited first. Further, as the transport energy further reduces and becomes dispersed, the sorting for the fine-grained sediments becomes poor. Considering the characteristics of spatial distribution, sediments along the farm road showed the properties of floodplain deposits that transport to natural levee and back swamp due to river flooding. On the other hand, sediments along the irrigation ditch exhibited the properties of the deposits that are carried by the flow backward of ditch from the river after the collapse of the embarkment. The results of this study are significant because characteristics of flood sediments were elucidated for major rivers where flooding rarely occurs due to the recently built artificial structures. In addition, by applying the grain size distribution characteristics of present river flood sediments, it will be able to contribute to clarifying the sedimentary environments of the paleo river flood deposits.

Smartphone Digital Image Processing Method for Sand Particle Size Analysis (모래 입도분석을 위한 스마트폰 디지털 이미지 처리 방법)

  • Ju-Yeong Hur;Se-Hyeon Cheon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.164-172
    • /
    • 2023
  • The grain size distribution of sand provides crucial information for understanding coastal erosion and sediment deposition. The commonly used sieve analysis for grain size distribution analysis has limitations such as time-consuming processes and the inability to obtain information about individual particle shapes and colors. In this study, we propose a grain size distribution analysis method using smartphone digital images, which is simpler and more efficient than the sieve analysis method. During the image analysis process, we effectively detect particles from relatively low-resolution smartphone digital images by extracting particle boundaries through image gradient calculation. Using samples collected from four beaches in Gyeongsangbuk-do, we compare and validate the proposed boundary extraction image analysis method with the analysis method that does not extract boundaries, against sieve analysis results. The proposed method shows an average error rate of 8.21% at D50, exhibiting a 65% lower error compared to the method without boundary extraction. Therefore, grain size distribution analysis using smartphone digital images is convenient, efficient, and demonstrated accuracy comparable to sieve analysis.

The Study on the Compaction Characteristics of Underground Structural Backfill with Reclaimed Soil (준설토를 이용한 지하구조물 뒷채움 다짐특성에 관한 연구)

  • 김영웅;박기순;손형호;김종국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.357-364
    • /
    • 1999
  • The purpose of this study is to analysis the grain distribution and compaction characteristics of structural backfill with reclaimed soil. Five(5) reclaimed soil samples which passed #200 sieve have been used in the test. The study showed that the maximum dry density and the bearing value rate turned out to be becoming smaller when the more the quantity passed #200 sieve, the smaller the soil grain. The maximum dry density value calculated from the compaction md relative density test showed wet method > compaction method > dry method. The correlation coefficient between Rc and Dr based on the grain distribution and the compaction characteristics showed that the maximum dry density value by the wet method is little higher than the compaction method and dry method.

  • PDF

Assessment of Grain Size Distribution in a Hammer-Forged Alloy 718 Disk (해머 단조된 Alloy 718 디스크의 결정립 분포 해석)

  • 염종택;박노광
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.250-256
    • /
    • 1997
  • Hammer forging was employed for Alloy 718 disk. The change in grain size during hot forging depends very much on dynamic recrystallization. The final grain size depends especially on the critical strain$($\varepsilon$_C)$/TEX> for dynamic recrystallization and Zener-Holloman parameter(Z). In this study, the critical strain$($\varepsilon$_C)$, the strain for 50 pct. recrystallization$($\varepsilon$_{0.5})$ and fraction of dynamic recrystallization(Xdyn) were measured by compression tests. FE simulation was also carried out ot predict the evolution of microstructure. The strain, strain rate and temperature distribution predicted by forging simulation can be effectively used to predict the distribution of grain sizes in the forged workpiece. The present model predictions showed an excellent agreement with the microstructural evolution of hammer-forged Alloy 718 disks.

  • PDF

Study on Young's Modulus of Coarse Granular Materials with Grain Size Distribution Adjustment (입도조정된 조립재료의 탄성계수에 대한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Su-Hyung;Lee, Jin-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.47-55
    • /
    • 2013
  • In the element test for coarse granular materials, the grain size distributions of the materials are often adjusted, in case the grain size of coarse material in the field is larger than the available maximum grain size of the laboratory test equipment. In this study, we carried out the large cyclic triaxial test to evaluate the effect of the grain size distribution adjustment on Young's modulus in small to intermediate strain level. The test results showed that the coarse granular materials with the adjusted grain size distribution underestimated Young's modulus of the original materials. The difference of Young's modulus was larger in small strain level than in intermediate strain level.