• Title/Summary/Keyword: Grain Design

Search Result 474, Processing Time 0.03 seconds

Response of Soybean (Glycine max L.) to Subsurface Drip Irrigation with Different Dripline Placements at a Sandy-loam Soil

  • Lee, Sanghun;Jung, Ki-Yuol;Chun, Hyen-Chung;Choi, Young-Dae;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.2
    • /
    • pp.79-89
    • /
    • 2018
  • Subsurface drip irrigation (SDI) system is considered one of the most effective methods for water application. A 2-year field study was conducted to investigate the effect of SDI systems with various dripline spacing (0.7 or 1.4 m) and position (under furrow or ridge) on soybean (Glycine max L.) production at a sandy-loam soil in Miryang, South Korea. For 2016-2017, average grain yield in SDI irrigated plots, $3.16Mg\;ha^{-1}$, was statistically greater than rainfed irrigated plot ($2.63Mg\;ha^{-1}$). Soybean grain yield averaged $3.25Mg\;ha^{-1}$ for the 0.7 m dripline spacing and $3.07Mg\;ha^{-1}$ for the 1.4 m spacing for the two-year period compared to a rainfed irrigated average of $2.63Mg\;ha^{-1}$ for the same period. Soybean treated with SDI system had significantly greater values of normalized difference vegetation index and stomatal conductance, indicating that soybean plants in SDI plots had greater photosynthetic and stomatal activity due to the higher water availability in soil. Irrigation water use efficiency (IWUE) was greatest in the plot of 0.7 m spacing installed under ridge position than any other plot across growing season. Average soil water content in plots with 0.7 m dripline spacing was $0.21m^3\;m^{-3}$ at 5 cm depth layer, which was 45% greater compared to the plots with 1.4 m spacing, even though the gross irrigation amounts were greater in 1.4 m spacing plots. It is concluded that wide dripline spacing (1.4 m) is probably the more economical installation design for SDI system compared to 0.7 m spacing in this study soil because the initial cost for dripline may be reduced with wide spacing design, even though the IWUE is greater in the plot of 0.7 m dripline spacing.

Comparison of the physical characteristics according to the varieties of perilla for the development of a high-quality, high-efficiency cleaner and stone separator

  • Park, Jong Ryul;Park, Heo Man;Park, Hye Rin;Yang, Gye Hoon;Lee, Jung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.717-726
    • /
    • 2020
  • The physical characteristics of the major varieties of perilla were analyzed to use as basic data for the design of a high-quality, high-efficiency perilla cleaner and stone separator. Because the size, thousand-grain weight, angle of repose, angle of friction, bulk density and terminal velocity of perilla have significant differences according to the perilla variety, the different of characteristics by variety should be considered for performance improvement of a perilla cleaner and stone separator. Therefore the cleaner and stone separator using a sieve could be improved by the application of a detachable sieve or by using equipment such as a 2 - 3 stage sieve and regulating the slope. Moreover, because differences in the terminal velocity occur due to the differences in the size and thousand-grain weight according to the perilla variety, a blower with an adjustable fan speed was considered for the design of the improved cleaner. Additionally, it was shown that the length of perilla has the greatest correlation based on a comparison of the coefficients of the other characteristics. Accordingly, the length of perilla could be used as a major factor for the fine adjustment and parts replacement of the device. These results can be used as basic data for a high-quality, high-efficiency perilla cleaner and stone separator. In the future, the development of the machine and follow-up studies based on the basic data are needed to determine the optimized operating conditions and mechanism of action.

Optimization for Roughness Coefficient of River in Korea - Review of Application and Han River Project Water Elevation - (실측 자료를 이용한 국내하천의 조도계수 산정 -적용성 및 한강의 계획홍수위 검토-)

  • Kim, Jooyoung;Lee, Jong-Kyu;Ahn, Jong-Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.571-578
    • /
    • 2010
  • Manning's roughness coefficients were reevaluated for the computation of river flow of the Han River, the Nakdong River and the Geum River. The roughness coefficients were estimated by two methods. One is based on the assumption that roughness is primarily a function of grain diameter and the other is based on the findings that roughness may vary significantly with the flow discharge. The roughness coefficients adopted in each river improvement master plan have been compared with those obtained using the FLDWAV in this study, and their applicabilities have been reviewed, using the FLDWAV and HEC-RAS models. The design flood water levels computed by the abovementioned models with the roughness coefficients proposed in this study have shown good agreement with the measurements of time variation. The roughness coefficients computed using the FLDWAV model showed nearly no close correlation with the various hydraulic characteristic factors, such as grain size and river depth, etc.. Finally the design flood water levels and levee safety about the downstream part from the Paldang Dam of the Han River has been reviewed using HEC-2 model with roughness coefficients of this study and the results indicated that some parts of the existing levees were short of safety.

Evaluation and optimization of geometric error by using Taguchi method (다구찌기법에 의한 형상오차 평가 및 최적화)

  • 지용주;곽재섭;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.298-303
    • /
    • 2004
  • parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Micromachined MoO3 Gas Sensor with Low Power Consumption of 0.5 Watt

  • Jang, Gun-Eik;Wu Q.H.;Liu C.C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.173-176
    • /
    • 2005
  • A new $MoO_3$ based microsensor with low power consumption was presented. Typical size of sensor was 5mm in width and 8mm in length. As a sensitive electrode, $MoO_3$ was successfully fabricated by IC technology on pyrex glass of $250{\mu}m$ in thickness. After annealing at $550^{\circ}C$ for 3hrs, the film was fully crystallized and demonstrated as pure $MoO_3$ structure. The grain size of $MoO_3$ was plat like and typical size was about $1{\mu}m$. Based on the results of sensitivity measurement, $MoO_3$ microsensor shows especially high selectivity to $H_2$ reducing gas atmosphere. The applied heater power was lower than 0.5 Watt.

The Studies on the Design of a Subscale Solid Propellant Rocket Motor (축소 모사형 고체 추진기관 설계에 관한 연구)

  • Kim, Hyung-Won;Oh, Jong-Yun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.215-218
    • /
    • 2009
  • A design of a subscale solid propellant rocket motor was conducted to do the similitude experiments for the large scale rocket motor. One of the main factor to subscale was the mach number of the solid propellant flume through a nozzle exit The analysis of the flume flow was done to obtain the mach number for the large and subscale rocket motor. The flume shapes on the non dimensional axises by the nozzle exit diameter was matched each other. The propellant grain of a subscale solid rocket motor was designed by the profile of pressure vs time obtained by the mach number of the flume shape. Some analyses of the theoretical solution were compared with the results of the ground static test.

  • PDF

Parallel computation for transcendental structural eigenproblems

  • Kennedy, D.;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.635-644
    • /
    • 1997
  • The paper reviews the implementation and evaluation of exact methods for the computation of transcendental structural eigenvalues, i.e., critical buckling loads and natural frequencies of undamped vibration, on multiple instruction, multiple data parallel computers with distributed memory. Coarse, medium and fine grain parallel methods are described with illustrative examples. The methods are compared and combined into hybrid methods whose performance can be predicted from that of the component methods individually. An indication is given of how performance indicators can be presented in a generic form rather than being specific to one particular parallel computer. Current extensions to permit parallel optimum design of structures are outlined.

Analysis and Optimization of Geometric Error in Surface Grinding using Taguchi Method (다구찌기법에 의한 연삭가공물의 형상오차 분석 및 최적화)

  • Chi, Long-Zhu;Hwang, Yung-Mo;Yoon, Moon-Chul;Ryoo, In-Il;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.13-19
    • /
    • 2004
  • This paper deals with the analysis of geometric error and the optimization of process parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Characteristics of Volume Loss for Base Materials with Different Hydraulic Pressures and Filter Grain Size (필터재의 입도범위와 작용수압에 따른 성토재의 유실 특성)

  • 송창섭;인현식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.65-72
    • /
    • 2003
  • The objective of this study is to evaluate the stability of the design criteria recommended by Betram and Terzaghi as compared with the experimental result. A series of NEF tests was conducted to determine the loss of volume in base soils. The three kinds of base soils classified as CL, SC and SM are used for the NEF tests with various hydraulic pressures and filters following upper and lower bond of the criteria. Volume loss characteristics of the base soils was examined closely by the results of the test successfully. Firstly, it was found that the loss of base soils was mostly eroded at the first stage of seepage. Secondly, the amount of loss volume was ranked CL > SM > SC in order of their amounts for upper criteria, and SM > CL > SC orderly for lower criteria. Thirdly, the volume loss of all soils was increased with increasing the hydraulic pressures. And lastly, the needs of the new design criteria was proved for the control of seepage and piping.

Experimental study on the surface integrity of electrode for WEDG process (WEDG 전극가공에서의 전극표면형상의 실험적 고찰)

  • 안현민;김영태;박성준;이송규;이상조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.218-222
    • /
    • 2002
  • Micro-EDM is generally used far machining micro holes, pockets, and 3-D structures. For micro-EDM, first of all, micro-electrode fabrication is needed and WEDC system is proposed for tool electrode fabrication method. When tool electrode is fabricated using WEDG system, its characteristics are under the control of many EDM parameters. Also relations between the parameters affect electrode fabrication. In this study, experiments are carried out to analyze effects of EDM parameters about electrode surface integrity on micro-electrode fabrication. Experimental method and analysis are used to experimental design method. Factors used in experiments are composed of capacitance, resistance, pause time, wire feed rate, spindle rotating speed. As a result of experiments, capacitance and resistance affect electrode surface.

  • PDF