• Title/Summary/Keyword: Graft material

Search Result 559, Processing Time 0.022 seconds

Clinical application and classification of bone graft material according to component (임상가를 위한 특집 2 - 구성성분별 골이식재의 분류와 임상적용)

  • Kim, Young-Kyun
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.263-274
    • /
    • 2010
  • I classified the bone graft material according to the component. Most bone graft material is composed of inorganic and organic constituent. Organic component such DBM is associated with osteoinduction. Inorganic components such as hydroxyapatite, $\beta$-TCP, calcium sulfate, bioactive glass, polymer are associated with osteoconduction. Autogenous bone graft is ideal material. We can select any biocompatible material for the restoration of small filling defect with intact bony wall. However, we should select first osteogenetic and osteoinductive material to regenerate the viable bone tissue.

Radiographic evaluation of infra-bony defects treated by bone graft procedures (골 이식술에 의해 치료된 골연하 결손부의 방사선학적 변화 양상의 관찰)

  • Ryu, Sang-Ho;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.437-444
    • /
    • 2008
  • Purpose: A number of techniques and materials have been used for periodontal regeneration and bone graft procedures with guided tissue regeneration(GTR) have been suggested as alternatives to osseous surgery in the management of local infra-bony defects. However, the long-term stability and treatment outcome following bone graft procedure of infra-bony defects is poorly documented. The purpose of this study was to assess radiographic change in infra-bony defects over 2 years after bone graft procedures with various graft materials. Material and Methods: Patients attending the department of periodontics of Kyungpook National University Hospital were studied. Patients showed clinical and radiographic evidence of infra-bony defect(s). 44 sites of 34 patients aged 31 to 69 (mean age 48.3) were treated by bone graft procedure with a bone graft material. Baseline and 2-year follow-up radiographs were collected and evaluated for this study. Radiographic assessment includes a bone fill, bone crest change, defect resolution, and % of defect resolution. Pre- and post-treatment differences between variables (maxilla and mandible, defect depth, defect angle, bone graft materials) using the paired t-test were examined. Result: We observed $1.15{\pm}1.95\;mm$ of bone fill, $0.40{\pm}1.19\;mm$ of crestal resorption, $1.55{\pm}1.77\;mm$ of defect resolution, and $40{\pm}44%$ of percentage of defect resolution. Deeper initial defect depth, narrower initial defect angle showed significantly greater bone fill, defect resolution, and % of defect resolution. But no significant difference was observed in graft sites and graft materials. Conclusion: If good oral hygiene maintenance and periodic recall check of patients is assured, bone graft procedure using various graft materials is one of the appropriate treatment modality for regenerative therapy of infra-bony defects.

Comparison of Survival of SureDerm®, Permacol® Graft in Mouse (마우스에서 SureDerm®, Permacol® 이식 생존에 대한 비교)

  • Hong, Jung Soo;Kim, Woo Seob;Yu, Young Il;Kim, Han Koo
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.685-690
    • /
    • 2007
  • Purpose: Numerous materials, both autologous and nonautologous, have been used for augmentation of sunken areas and each has its own limitations. The ideal material for augmentation should not be absorbed in any manner. This study is designed to assess the survival of $SureDerm^{(R)}$, $Permacol^{(R)}$ graft according to the volume and histologic change. Methods: Twenty four mice, weighing about 50 grams and of 5 weeks of age were used. $SureDerm^{(R)}$ is an acellular dermal matix obtained from human cadeveric skin. $Permacol^{(R)}$ is a porcine derived acellular dermal matrix whose manufacture involves trypsinisation, solvent extraction. Graft pieces standardized to $1{\times}1cm$ size were used in each group. The implanted material were taken 1, 4, 8 and 12 weeks later, respectively. The changes of graft volume during the graft period were measured on initial, 1, 4, 8 and 12 weeks. Results: The initial shape of graft was maintained up to 12 weeks in $Permacol^{(R)}$ graft group and mean survival rate was $80.36{\pm}8.21%$ in $SureDerm^{(R)}$, $89.57{\pm}6.39%$ in $Permacol^{(R)}$(p=0.01). The volume of each graft decreased 29% from initial volume on 12 weeks in $SureDerm^{(R)}$, 18% in $Permacol^{(R)}$. The structure of $Permacol^{(R)}$ remained until 12 week after implantation. Conclusion: Our experimental study suggests that $Permacol^{(R)}$ could be a safe material as an implant for permanent augmentation. However, There are further study remained for antigenicity of these material, and the choice of graft for augmentation should be remained to the clinical situations.

Histomorphometric Study of Sinus Bone Graft using Various Graft Material (다양한 골이식재료를 이용한 상악동 골이식 4개월 후 조직형태계측학적 평가)

  • Lee, Ji-Young;Kim, Young-Kyun;Kim, Su-Gwan;Lim, Sung-Chul
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.141-147
    • /
    • 2011
  • The aim of this study was to evaluate histomorphometrically and compare the efficiency of various bone graft material and autogenous tooth bone graft material which were used in sinus bone graft procedure. Subjects were the 24 patients who had treated with sinus bone graft using lateral approach from October 2007 to September 2009 at SNUBH. The average age was $52.51{\pm}11.86$ years. All cases was taken after 4month of procedure and divided into 3 groups according to bone graft material. Group 1: autogenous tooth bone graft material, Group 2: OrthoblastII(integra lifescience corp. Irvine, US)+Biocera(Osscotec, seoul, korea), group 3: DBX(Synthes, USA)+BioOss(Geistlich Pharm AG, Wolhusen, Switzerland). Total 37 implant placement area were included and evaluated(7 in group 1, 10 in group 2, 20 in group 3). Evaluation of new bone formation, ratio of woven bone to lamellar bone, ratio of new bone to graft material were performed on each tissue section. Kruskal-Wallis test was used for statistical analysis(SPSS Ver. 12.0, USA). New bone formation were $52.5{\pm}10.7%$ in group 1, $52.0{\pm}23.4%$ in group 2, $51.0{\pm}18.3%$ in group 3. There were no statistical significant differences between each groups. Ratio of woven bone to lamella bone were $82.8{\pm}15.3%$ in group 1, $36.7{\pm}59.3%$ in group 2, $31.0{\pm} 51.2%$ in group 3. Ratio of new bone to graft material were $81.3{\pm}10.4%$ in group 1, $72.5{\pm}28.8%$ in group 2, $80.3{\pm}24.0%$ in group 3. After 4 month of healing period, all group showed favorable new bone formation and around graft material and implant. Within limitation of our study, it is suggested that autogenous tooth bone graft material might be used as novel bone graft material for sinus bone graft.

Clinical Study on the Efficacy of the Autogenous Tooth Bone Graft Material (AutoBT) (자가치아 뼈 이식재의 유용성에 관한 임상적 연구)

  • Han, Min Woo;Lee, Jeong Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.4
    • /
    • pp.221-226
    • /
    • 2013
  • Purpose: This study is to evaluate the efficacy of the autogenous tooth bone graft material, clinically and radiologically, as related to implant installation. Methods: In oral and maxillofacial surgery department of Ajou University Hospital, guided bone regeneration (GBR), implant placement combined with GBR, sinus graft, implant placement combined with sinus graft, and defect filling were performed in 46 patients, using autogenous tooth bone. Among these, 66 implants were inserted with autogenous tooth bone. Implant stability quotient (ISQ) was measured by Osstell Mentor (Integration Diagnostics, Goteborg, Sweden) on 39 implants on the operation date and 4 months later, and on 21 implants 9months on the average at the final setting of restoration. Twenty-eight implants with GBR and sinus graft (GBR group: n=14, sinus graft group: n=14) were evaluated radiologically to measure the resorption of grafted autogenous tooth bone after loading. Results: The average initial stabilization of the installed implants was 67 ISQ, and the average secondary stabilization at 4 months later was 76. The average bone loss of GBR group as measured 8.0 months after application of prosthesis loading was 0.29 mm and the average bone loss of the sinus graft group as measured 7.6 months after application of prosthesis loading was 0.66 mm, respectively. In the histological assessment, formation of the new bone and continuous trabecular bone pattern was identified around autogenous tooth bone. Conclusion: Based on these results, we concluded that autogenous tooth bone is an excellent bone graft material that can substitute the autogenous bone.

Autogenous fresh demineralized tooth graft prepared at chairside for dental implant

  • Kim, Eun-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.8.1-8.6
    • /
    • 2015
  • Background: This study aimed to evaluate the clinical usefulness of autogenous fresh demineralized tooth (auto-FDT) graft prepared at the chairside for alveolar bone grafting during dental implant surgery. Methods: In total, 38 patients requiring both tooth extraction (for endodontic or periodontal reasons or third molar extraction) and alveolar bone regeneration for dental implant placement were included. Within 2 h after clean extraction, the teeth were prepared at the chairside to serve as bone graft material. In the same sitting, blocks or chips of this graft material were used to reconstruct defects at the osteotomy site simultaneously with or before implant placement. Twelve months after prosthesis fabrication and placement, the clinical findings and implant success rates were evaluated. Histological studies were randomly conducted for selected cases. Results: Clinical evaluation showed favorable wound healing with minimal complications and good bone support for the implants. No implant was lost after 12 months of function following prosthetic rehabilitation. Histological examination revealed new bone formation induced by the graft material. Conclusions: Chairside preparation of autogenous fresh demineralized teeth after extraction can be a useful alternative to the use of autogenous bone or other graft materials for the immediate reconstruction of alveolar bone defects to facilitate subsequent implant placement.

USEFULNESS OF ACELLULAR DERMAL MATRIX GRAFT ON THE TISSUE REGENERATION IN RABBITS (가토에서 조직 재생 이식재로서 무세포성 진피 기질의 효용)

  • Choi, Jong-Hak;Ryu, Jae-Young;Ryu, Sun-Youl
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.220-229
    • /
    • 2008
  • Purpose: The present study was aimed to examine the effect of acellular dermal matrix ($AlloDerm^{(R)}$) grafted to the experimental tissue defect on tissue regeneration. Materials and Methods: Male albino rabbits were used. Soft tissue defects were prepared in the external abdominal oblique muscle. The animals were then divided into 3 groups by the graft material used: no graft, autogenous dermis graft, and $AlloDerm^{(R)}$ graft. The healing sites were histologically examined at weeks 4 and 8 after the graft. In another series, critical sized defects with 8-mm diameter were prepared in the right and left iliac bones. The animals were then divided into 5 groups: no graft, grafted with autogenous iliac bone, $AlloDerm^{(R)}$ graft, $AlloDerm^{(R)}$ graft impregnated with rhBMP-2, and $AlloDerm^{(R)}$ graft with rhTGF-${\beta}1$. The healing sites of bone defect were investigated with radiologic densitometry and histological evaluation at weeks 4 and 8 after the graft. Results: In the soft tissue defect, normal healing was seen in the group of no graft. Inflammatory cells and foreign body reactions were observed in the group of autogenous dermis graft, and the migration of fibroblasts and the formation of vessels into the collagen fibers were observed in the group of $AlloDerm^{(R)}$ graft. In the bone defect, the site of bone defect was healed by fibrous tissues in the group of no graft. The marked radiopacity and good regeneration were seen in the group of autogenous bone graft. There remained the traces of $AlloDerm^{(R)}$ with no satisfactory results in the group of $AlloDerm^{(R)}$ graft. In the groups of the $AlloDerm^{(R)}$ graft with rhBMP-2 or rhTGF-${\beta}1$, there were numerous osteoblasts in the boundary of the adjacent bone which was closely approximated to the $AlloDerm^{(R)}$ with regeneration features. However, the fibrous capsule also remained as in the group of $AlloDerm^{(R)}$ graft, which separated the $AlloDerm^{(R)}$ and the adjacent bone. Conclusions: These results suggest that $AlloDerm^{(R)}$ can be useful to substitute the autogenous dermis in the soft tissue defect. However, it may not be useful as a bone graft material or a carrier, since the bone defect was not completely healed by the bony tissue, regardless of the presence of osteogenic factors like rhBMP-2 or rhTGF-${\beta}1$.

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

A prospective study on the effectiveness of newly developed autogenous tooth bone graft material for sinus bone graft procedure

  • Jun, Sang-Ho;Ahn, Jin-Soo;Lee, Jae-Il;Ahn, Kyo-Jin;Yun, Pil-Young;Kim, Young-Kyun
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.528-538
    • /
    • 2014
  • PURPOSE. The purpose of this prospective study was to evaluate the effectiveness of newly developed autogenous tooth bone graft material (AutoBT)application for sinus bone graft procedure. MATERIALS AND METHODS. The patients with less than 5.0 mm of residual bone height in maxillary posterior area were enrolled. For the sinus bone graft procedure, Bio-Oss was grafted in control group and AutoBT powder was grafted in experimental group. Clinical and radiographic examination were done for the comparison of grafted materials in sinus cavity between groups. At 4 months after sinus bone graft procedure, biopsy specimens were analyzed by microcomputed tomography and histomorphometric examination for the evaluation of healing state of bone graft site. RESULTS. In CT evaluation, there was no difference in bone density, bone height and sinus membrane thickness between groups. In microCT analysis, there was no difference in total bone volume, new bone volume, bone mineral density of new bone between groups. There was significant difference trabecular thickness ($0.07{\mu}m$ in Bio-Oss group Vs. $0.08{\mu}m$ in AutoBT group) (P=.006). In histomorphometric analysis, there was no difference in new bone formation, residual graft material, bone marrow space between groups. There was significant difference osteoid thickness ($8.35{\mu}m$ in Bio-Oss group Vs. $13.12{\mu}m$ in AutoBT group) (P=.025). CONCLUSION. AutoBT could be considered a viable alternative to the autogenous bone or other bone graft materials in sinus bone graft procedure.

Clinical Study on the Alveolar Bone Repair Capacity of Dentin Matrix Block (Dentin Matrix Block의 치조골 복원 능력에 관한 임상적 연구)

  • Kim, Kyung-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • In the oral and maxillofacial area, bone defects are created by various reasons and demand for bone grafts, while dental implant implantation has been increased consistently. To solve these problems, there has been development of autogenous tooth-bone graft material (AutoBT$^{(R)}$, Korea Tooth Bank Co., Korea), and we have collected ground reasons to substitute free autobone graft with this material in clinical use. This autogenous tooth-bone graft material is produced in powder type and block type. Block type is useful in esthetic reconstruction of the defect site and vertical and horizontal augmentation of alveolar bone because this type has high strength value, well maintained shape and is less absorbed. Therefore, the author of this study gained favorable result by grafting the block type autogenous tooth-bone graft material after dental implant implantation on the bone defects of the mandibular molar extraction site. Moreover, the author represents this case with literature review after confirming bone remodeling on the computed tomography image and by histological analysis.