• Title/Summary/Keyword: Graetz 문제

Search Result 3, Processing Time 0.016 seconds

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

Graetz Problem Solutions for a Modified Power Law Fluid over a Wide Range of Shear Rate (광범위한 전단률에서 적용가능한 수정된 POWER LAW 유체에 대한 GRAETZ문제 해법)

  • T.F. irvine, Jr
    • The Korean Journal of Rheology
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • 층류 열전달에서 작은 Reynolds number에서의 원통내의 흐름에대한 Power law 유 체의 해법이 사용될 수가 없는 것을 낮은 전단률(Shear Rate)에서 Power Law 법칙이 적용 되지 않기 때문이다. 본 연구에서는 이문제를 새로운 구성방정식을 이용하여 높은 전단률에 서는 Power Law 법칙이 낮은 전단률에서는 Newtonian 법칙이 그 중간에서는 천이과정을 모두 포함하는 전범위의 전단률에 대해 해결하였다. 이러한 구성방정식의 기본개졈은 실험 결과와도 잘 일치하였따. 이 구성방정식을 이용하여 Graetz 문제를 해결하였고 경계조건은 일정온도와 일정열속이다. 이용하기 쉬운 전단률변수는 적용범위가 Newtonian인지 Power law 인지 아니면 중간 천이과정인지를 나타내준다.

  • PDF

Laminar Convective Heat Transfer of a Bingham Plastic in a Circular Pipe(I) Analytical approach- thermally fully developed flow and thermally develping flow(the Graetz problem extended) (원관내 Bingham Plastic의 층류 대류 열전달(1)해석적 연구-완전발달유동과 온도분포 발달유동(확장된 그래츠문제))

  • Min, Tae-Gi;Yu, Jeong-Yeol;Choe, Hae-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3991-4002
    • /
    • 1996
  • Thermally fully developed and thermally developing laminar flows of a Bingham plastic in a circular pipe have been studied analytically. For thermally fully developed flow, the Nusselt numbers and temperature profiles are presented in terms of the yield stress and Peclet number, proposing a correlation formula between the Nusselt number and the Peclet number. The solution to the Graetz problem has been obtained by using the method of separation of variables, where the resulting eigenvalue problem is solved approximately by using the method of weighted residuals. The effects of the yield stress, Peclet and Brinkman numbers on the Nusselt number are discussed.