• Title/Summary/Keyword: Gradient response

Search Result 316, Processing Time 0.032 seconds

The Development of Gradient Response CVT for a Small Size Electric Vehicle (소형 전기차량용 구배반응 무단변속기 개발)

  • Kim, Gyu-Sung;Kwon, Young-Woong
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.33-38
    • /
    • 2015
  • In this study new CVT(Continuously Variable Transmission) system which is adaptable to a small size electric vehicle is proposed available to gradient response CVT. New pulleys consist of springs adapted driving pulley and driven pulley. At the moment a small electric vehicle drive a slope, new system respond to a gradient as overcoming tensional force of springs. We made prototype of gradient response CVT to test parts performance and travelling performance test. As a result of test, belt pitch diameter varied for high torque direction at the gradient. In the flat travelling, acceleration travelling and gradient travelling performance test, the small electric vehicle with gradient response CVT get improved perfomance than the small electric vehicle with reduction gear.

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

Unsteady Turbulent Flow with Sudden Pressure Gradient Change

  • Chung Yongmann M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.46-47
    • /
    • 2003
  • Direct numerical simulations are performed for a turbulent flow subjected to a sudden change in pressure gradient. The calculations are started from a fully-developed turbulent channel flow at $Re_{\tau}=180$. The pressure gradient of the channel flow is then changed abruptly. The responses of the turbulence quantities (e.g., turbulence intensities, Reynolds shear stress, and vorticity fluctuations) and the near-wall turbulence structure to the pressure gradient change are investigated. It is found that there are two different relaxations: a fast relaxation at the early stage and a slow one at the later stage. The early response of the velocity fluctuations shows an anisotropic response of the near-wall turbulence.

  • PDF

Test of Intermediate Disturbance Hypothesis by Experimental disturbance Gradient in Old-Field Plant Community (묵밭에서 교란처리구배에 따른 중간교란가설의 검증)

  • 이규송;김준호
    • The Korean Journal of Ecology
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 1998
  • In order to test of intermediate disturbance hypothesis that an intermediate level of disturbance maximize biodiversity and to elucidate the effect of disturbance during the early old-field succession, the response of plant community along an experimental disturbance gradient was investigated in a five-year old-field. Response of plant community along an experimental disturbance gradient was connected with light condition because artificial disturbance gradient had been treat by clipping of plants and removing of litter. Artificial disturbance in five-year old-field plant community retarded rate of succession by increasing invasion and performance of the earlier successional species in the initial and middle stage of disturbance treatment. The species richness in the blocks of intermediate disturbance level showed the peak in early and mid-summer. This result did correspond with the prediction of intermediate disturbance hypothesis.

  • PDF

A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates

  • Mahmoudpour, E.;Hosseini-Hashemi, SH.;Faghidian, S.A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.103-119
    • /
    • 2018
  • In the present research, an attempt is made to obtain a semi analytical solution for both nonlinear natural frequency and forced vibration of embedded functionally graded double layered nanoplates with all edges simply supported based on nonlocal strain gradient elasticity theory. The interaction of van der Waals forces between adjacent layers is included. For modeling surrounding elastic medium, the nonlinear Winkler-Pasternak foundation model is employed. The governing partial differential equations have been derived based on the Mindlin plate theory utilizing the von Karman strain-displacement relations. Subsequently, using the Galerkin method, the governing equations sets are reduced to nonlinear ordinary differential equations. The semi analytical solution of the nonlinear natural frequencies using the homotopy analysis method and the exact solution of the nonlinear forced vibration through the Harmonic Balance method are then established. The results show that the length scale parameters give nonlinearity of the hardening type in frequency response curve and the increase in material length scale parameter causes to increase in maximum response amplitude, whereas the increase in nonlocal parameter causes to decrease in maximum response amplitude. Increasing the material length scale parameter increases the width of unstable region in the frequency response curve.

Nonlinear response of laterally loaded rigid piles in sand

  • Qin, Hongyu;Guo, Wei Dong
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.679-703
    • /
    • 2014
  • This paper investigates nonlinear response of 51 laterally loaded rigid piles in sand. Measured response of each pile test was used to deduce input parameters of modulus of subgrade reaction and the gradient of the linear limiting force profile using elastic-plastic solutions. Normalised load - displacement and/or moment - rotation curves and in some cases bending moment and displacement distributions with depth are provided for all the pile tests, to show the effect of load eccentricity on the nonlinear pile response and pile capacity. The values of modulus of subgrade reaction and the gradient of the linear limiting force profile may be used in the design of laterally loaded rigid piles in sand.

Heart Response Effect by 1/f Fluctuation Sounds for Emotional Labor on Employee (1/f 수준 별 음악 자극이 감정 노동 종사자의 심장 반응에 미치는 효과)

  • Jeon, Byung-Mu;Whang, Min-Cheol
    • Science of Emotion and Sensibility
    • /
    • v.18 no.3
    • /
    • pp.63-70
    • /
    • 2015
  • This study identified heart response of participants while listening to sounds which have 1/f fluctuations with exponent ${\alpha}$ gradient. The participants were engaged in emotional stress work. Prior studies related to 1/f fluctuation sound have reported that sound source can alleviate psychological and physiological state of users. Subjects of this study were exposed to sound with three levels of ${\alpha}$ gradient. Heart response of subjects were measured with Photoplethysmography(PPG) sensor simultaneously. The dependent variables of this study were beat per minute(BPM), very low frequency percent of pulse rate variability (VLF percent), the standard deviation of all normal RR intervals (SDNN), and high frequency power(HF power). Subject showed arousal response when exposed to sound with exponent ${\alpha}$ gradient of 3 whereas the sound with exponent ${\alpha}$ gradient of 1 and 2 resulted in relax effect. The characteristic of 1/f fluctuation sounds can be applied to alleviate stress for employers under emotional labor.

Sub-pixel Evaluation with Frequency Response Analysis

  • OKAMOTO Koji
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.14-22
    • /
    • 2001
  • The frequency responses on the sub-pixel evaluation technique were investigated using the Monte-calro Simulation technique. The frequency response by the FFT based cross-correlation gives very good results, however, the gain loss does exist for the small displacement, (less than 0.5 pixel). While, the no gain loss is observed in the Direct Cross-correlation, however, the sub-pixel accuracy was limited to be about 0.1 pixel, i.e., it could not detect the small displacement. To detect the higher accurate sub-pixel displacement, the gradient based technique is the best. For the small interrogation area (e.g., 4x4), only the gradient technique can detect the small displacement correctly.

  • PDF

Dynamic characteristics of multi-phase crystalline porous shells with using strain gradient elasticity

  • Ahmed, Ridha A.;Al-Maliki, Ammar F.H.;Faleh, Nadhim M.
    • Advances in nano research
    • /
    • v.8 no.2
    • /
    • pp.157-167
    • /
    • 2020
  • This paper studies forced vibrational behavior of porous nanocrystalline silicon nanoshells under radial dynamic loads using strain gradient theory (SGT). This type of material contains many pores inside it and also there are nano-size grains which define the material character. The formulation for nanocrystalline nanoshell is provided by first order shell theory and a numerical approach is used in order to solve nanoshell equations. SGT gives a scale factor related to stiffness hardening provided by nano-grains. For more accurate description of size effects due to nano-grains or nano-pore, their surface energy influences have been introduced. Surface energy of inclusion exhibit extraordinary influence on dynamic response of the nanoshell. Also, dynamic response of the nanoshell is affected by the scale of nano-grain and nano-pore.

The Response Improvement of PD Type FLC System by Self Tuning (자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선)

  • Choi, Hansoo;Lee, Kyoung-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.