• Title/Summary/Keyword: Gradient operator

Search Result 95, Processing Time 0.036 seconds

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

An Improved Area Edge Detection for Real-time Image Processing (실시간 영상 처리를 위한 향상된 영역 경계 검출)

  • Kim, Seung-Hee;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.

An Efficient BLU Inspection Using Noise-Tolerant Context-free Attention Operator (잡음에 강건한 주목 연산자를 이용한 효과적인 BLU 얼룩 검사)

  • Park, Chang-Jun;Choe, Heung-Mun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.640-647
    • /
    • 2001
  • In this paper, a noise-tolerant generalized symmetry transform(NTGST) is proposed as an effective attention operator for the spot detection in BLU inspection, in which various spots with variable sizes, shapes, gray levels, and low contrast, should be detected from the complex, noisy background with lattice shaped shading. The proposed NTGST takes into account the polarity of convergence and divergence of the radial orientation of the intensity gradient as well as it's magnitude and symmetry, and thereby can detect only the BLU spots from the noisy and lattice shaped shadows of background. Experiments are conducted on the BLU inspection image obtained by CCD camera, and the proposed NTGST is Proved to be effectively used in BLU inspection.

  • PDF

Lateral Control of Vision-Based Autonomous Vehicle using Neural Network (신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어)

  • 김영주;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

Recognition of width and height modulated barcode printed at arbitrary position for postal service (임의의 위치에 인쇄된 우정업무용 폭 및 높이 변조형 바코드의 인식)

  • 김현수;이강희;유중돈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.805-814
    • /
    • 1998
  • An efficient image processing algorithm is proposed to recognize both the height and width modulated barcodes which are rotated and printed at an arbitrary position. The main feature of this algorithm is to utilize the gradient information of a rotated barcode with a Sobel operator. The barcode area is extracted using the gradient information, and the barcode is decoded from the binary image of the extracted area. Theis algorithm is successfully applied to the 4 state and width modulated barcodes. It takes 0.86 secoden to process a letter, and the recognition rate reaches above 98% under various testing conditions. Since both the width and height modulated barcodes are processed with the proposed algorithm, it can be applied to postal service automation.

  • PDF

An Automatic Setting Method of Control Parameters for Robot Soccer (로봇축구를 위한 제어변수의 자동설정 방법)

  • 박효근;이정환;박세훈;박세현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.599-602
    • /
    • 2004
  • In this paper, an automatic setting method of control parameters for robot scorer is proposed. First we acquisited some local image lesions including robots and ball patch, and sampled the regions to RCB value. Edge operator is applied to get magnitude of gradient at each pixel. Some effective patch regions can be detected by magnitude of gradient, and YUV value at each pixel in patch lesions can be obtained. We can determine control parameters of robot soccer using luminance component of YUV. The proposed method is applied to robot soccer image to detect initial patch value and get control parameters adaptively in light variation.

  • PDF

Design and Performance Analysis of Adaptive First-Order Decimator Using Local Intelligibility (국부 가해성을 이용한 적응형 선형 축소기의 설계 및 성능 분석)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • This paper has for its object to propose AFOD(Adaptive First-Order Decimator) which sets a value of decimated element as an average of a value of neighbor intelligible component and a output value of FOD(First-Order Decimator) for the target pixel, and to analyze its performance in terms of subjective image quality and hardware complexity. In the proposed AFOD, a target pixel located at the center of sliding window is selected first, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each local intelligible weight. Next, a value of neighbor intelligible component is defined by adding a value of the right neighbor pixel times its local intelligible weight to a value of the lower neighbor pixel times its intelligible weight. Since the proposed method adaptively reflects neighbor intelligible informations of neighbor pixels on the decimated element according to each local intelligible weight, it can effectively suppress the blurring effect being the demerit of FOD. It also possesses the advantages that it can keep the merits of FOD with the good results on average but also lower computational cost.

  • PDF

A Method for Estimating Local Intelligibility for Adaptive Digital Image Decimation (적응형 디지털 영상 축소를 위한 국부 가해성 추정 기법)

  • 곽노윤
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.4
    • /
    • pp.391-397
    • /
    • 2003
  • This paper is about the digital image decimation algorithm which generates a value of decimated element by an average of a target pixel value and a value of neighbor intelligible element to adaptively reflect the merits of ZOD method and FOD method on the decimated image. First, a target pixel located at the center of sliding window is selected, then the gradient amplitudes of its right neighbor pixel and its lower neighbor pixel are calculated using first order derivative operator respectively. Secondly, each gradient amplitude is divided by the summation result of two gradient amplitudes to generate each intelligible weight. Next, a value of neighbor intelligible element is obtained by adding a value of the right neighbor pixel times its intelligible weight to a value of the lower neighbor pixel times its intelligible weight. The decimated image can be acquired by applying the process repetitively to all pixels in input image which generates the value of decimated element by calculating the average of the target pixel value and the value of neighbor intelligible element.

  • PDF

Prediction of Venous Trans-Stenotic Pressure Gradient Using Shape Features Derived From Magnetic Resonance Venography in Idiopathic Intracranial Hypertension Patients

  • Chao Ma;Haoyu Zhu;Shikai Liang;Yuzhou Chang;Dapeng Mo;Chuhan Jiang;Yupeng Zhang
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • Objective: Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology associated with venous sinus stenosis. This study aimed to develop a magnetic resonance venography (MRV)-based radiomics model for predicting a high trans-stenotic pressure gradient (TPG) in IIH patients diagnosed with venous sinus stenosis. Materials and Methods: This retrospective study included 105 IIH patients (median age [interquartile range], 35 years [27-42 years]; female:male, 82:23) who underwent MRV and catheter venography complemented by venous manometry. Contrast enhanced-MRV was conducted under 1.5 Tesla system, and the images were reconstructed using a standard algorithm. Shape features were derived from MRV images via the PyRadiomics package and selected by utilizing the least absolute shrinkage and selection operator (LASSO) method. A radiomics score for predicting high TPG (≥ 8 mmHg) in IIH patients was formulated using multivariable logistic regression; its discrimination performance was assessed using the area under the receiver operating characteristic curve (AUROC). A nomogram was constructed by incorporating the radiomics scores and clinical features. Results: Data from 105 patients were randomly divided into two distinct datasets for model training (n = 73; 50 and 23 with and without high TPG, respectively) and testing (n = 32; 22 and 10 with and without high TPG, respectively). Three informative shape features were identified in the training datasets: least axis length, sphericity, and maximum three-dimensional diameter. The radiomics score for predicting high TPG in IIH patients demonstrated an AUROC of 0.906 (95% confidence interval, 0.836-0.976) in the training dataset and 0.877 (95% confidence interval, 0.755-0.999) in the test dataset. The nomogram showed good calibration. Conclusion: Our study presents the feasibility of a novel model for predicting high TPG in IIH patients using radiomics analysis of noninvasive MRV-based shape features. This information may aid clinicians in identifying patients who may benefit from stenting.

Development of Automated Region of Interest for the Evaluation of Renal Scintigraphy : Study on the Inter-operator Variability (신장 핵의학 영상의 정량적 분석을 위한 관심영역 자동설정 기능 개발 및 사용자별 분석결과의 변화도 감소효과 분석)

  • 이형구;송주영;서태석;최보영;신경섭
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2001
  • The quantification analysis of renal scintigraphy is strongly affected by the location, shape and size of region of interest(ROI). When ROIs are drawn manually, these ROIs are not reproducible due to the operators' subjective point of view, and may lead to inconsistent results even if the same data were analyzed. In this study, the effect of the ROI variation on the analysis of renal scintigraphy when the ROIs are drawn manually was investigated, and in order to obtain more consistent results, methods for automated ROI definition were developed and the results from the application of the developed methods were analyzed. Relative renal function, glomerular filtration rate and mean transit time were selected as clinical parameters for the analysis of the effect of ROI and the analysis tools were designed with the programming language of IDL5.2. To obtain renal scintigraphy, $^{99m}$Tc-DTPA was injected to the 11 adults of normal condition and to study the inter-operator variability, 9 researchers executed the analyses. The calculation of threshold using the gradient value of pixels and border tracing technique were used to define renal ROI and then the background ROI and aorta ROI were defined automatically considering anatomical information and pixel value. The automatic methods to define renal ROI were classified to 4 groups according to the exclusion of operator's subjectiveness. These automatic methods reduced the inter-operator variability remarkably in comparison with manual method and proved the effective tool to obtain reasonable and consistent results in analyzing the renal scintigraphy quantitatively.

  • PDF