본 논문은 인터넷의 대표적인 문제점중의 하나인 Adult Image 분류 연구에 대해 기술한다. 특히 우리는 이러한 Adult Image를 분류하기 위한 Data Set을 5가지 타입으로 구성한다. 이러한 각 Image에 대해 Color, Gradient, Edge Direction 특성의 Feature들을 추출하고 이를 Histogram으로 구성한다. 이렇게 구성된 Histogram을 Support Vector Machine에 적용하여 Adult Image를 분류한다. 그 결과, 우리는 8250개의 Test Set에 대하여 Recall(96.53%), Precision(97.33%), False Positive(2.96%), F-Measure(96.93%)의 성능 결과를 보여준다.
볼록총채벌레는 최근 감귤원 해충 피해의 주요 해충으로 인식되어 주기적인 예찰이 이루어지고 있으나 성충의 크기가 0.8mm 정도로 작아 육안 식별에 어려움이 있다. 본 논문에서는 예찰 트랩에 포집된 볼록총채벌레를 자동으로 판별하기 위한 후보 영역 검출 방법을 제안하였다. 본 논문에서 사용한 방법은 히스토그램 기반의 템플릿 매칭으로 그레이 이미지와 그레디언트 이미지를 합성한 이미지를 사용하였다. 50 배율의 광학 현미경으로 영상을 획득 하였고, 제안한 방법의 객관적인 성능 판별을 위해 기존 방법[8]과 노이즈 제거 이미지를 이용한 히스토그램 기반 템플릿 매칭방법 그리고 그레디언트 이미지를 이용한 히스토그램 기반 템플릿 매칭 방법들과 비교 실험을 하였다. 실험결과 본 논문에서 제안한 방법이 기존 전처리[8] 방법 보다 약 14.42% 향상된 성능을 보였고, 노이즈 제거 이미지를 이용한 방법보다 41.63%, 그레디언트 이미지를 이용한 방법보다 21.17% 높은 성능을 보였다.
본 논문에서는 HOG 특정벡터와 영상분할을 이용한 부스팅 분류기반의 자동차영역 검출 알고리즘의 연구에 대해서 기술한다. 입력된 영상으로부터 차량을 검출하기위해 먼저 분할 후 합병(split-merge) 방법을 적용하여 영상을 분할한다. 그리고 가장 큰 두 영역을 검색 영역에서 제외하여 처리 속도를 향상 시킨다. 각 영역에 대해 HOG(histogram of oriented gradient) 특정을 추출한다. 분류기는 두 개의 모집단을 분류하는데 많이 사용되고 있는 AdaBoost 방법을 사용한다. 제안방법의 성능 평가를 위해 537개의 영상을 사용하여 분류기를 학습하였으며, 또한 학습에 사용하지 않은 비학습영상 500개를 사용하여 인식률을 구하였다. 실험결과 비학습영상에 대해 98.34%의 인식률을 얻었다. 결론적으로 제안된 방법이 지능형 자동차 제어 시스템에서 차량의 위치를 찾는 방법으로 활용될 수 있다.
In this paper, we present a technique to extract the title areas from book cover images. A typical book cover image may contain text, pictures, diagrams as well as complex and irregular background. In addition, the high variability of character features such as thickness, font, position, background and tilt of the text also makes the text extraction task more complicated. Therefore, we propose a two steps efficient method that uses Histogram of Oriented Gradients and color information to find the title areas. Firstly, text localization is carried out to find the title candidates. Finally, refinement process is performed to find the sufficient components of title areas. To obtain the best result, we also use other constraints about the size, ratio between the length and width of the title. We achieve encouraging results of extracted title regions from book cover images which prove the advantages and efficiency of the proposed method.
Smoke and fire have different shapes and colours. This article suggests a fully connected system which is used two features using Adaboost algorithm for constructing a strong classifier as linear combination. We calculate the local histogram feature by gradient and bin, local binary pattern value, and projection vectors for each cell. According to the histogram magnitude, this paper applied adapted weighting value to improve the recognition rate. To preserve the local region and shape feature which has edge intensity, this paper processed the normalization sequence. For the extracted features, this paper Adaboost algorithm which makes strong classification to classify the objects. Our smoke detection system based on the proposed approach leads to higher detection accuracy than other system.
This paper describes a real-time human and robot tracking method in Intelligent Space with multi-camera networks. The proposed method detects candidates for humans and robots by using the histogram of oriented gradients (HOG) feature in an image. To classify humans and robots from the candidates in real time, we apply cascaded structure to constructing a strong classifier which consists of many weak classifiers as follows: a linear support vector machine (SVM) and a radial-basis function (RBF) SVM. By using the multiple view geometry, the method estimates the 3D position of humans and robots from their 2D coordinates on image coordinate system, and tracks their positions by using stochastic approach. To test the performance of the method, humans and robots are asked to move according to given rectangular and circular paths. Experimental results show that the proposed method is able to reduce the localization error and be good for a practical application of human-centered services in the Intelligent Space.
Vu, Thi Ly;Do, Trung Dung;Jin, Cheng-Bin;Li, Shengzhe;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
Journal of Computing Science and Engineering
/
제9권1호
/
pp.29-38
/
2015
Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF). This paper also proposes new descriptors to represent the change of points within each part of a human body, caused by actions named as Histogram of Changing Points (HCP) and so-called Average Speed (AS) which measures the average speed of actions. The descriptors are combined to build a strong descriptor to represent human actions by modeling the information about appearance, local motion, and changes on each part of the body, as well as motion speed. The effectiveness of these new descriptors is evaluated in the experiments on KTH and Hollywood datasets.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.6000-6017
/
2018
This paper presents a new descriptor, named Histograms of Prominent Edge Directions (HPED), for the recognition of facial expressions in a person-independent environment. In this paper, we raise the issue of sampling error in generating the code-histogram from spatial regions of the face image, as observed in the existing descriptors. HPED describes facial appearance changes based on the statistical distribution of the top two prominent edge directions (i.e., primary and secondary direction) captured over small spatial regions of the face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe the spatial regions, which helps avoid sampling error despite having fewer samples while preserving the valuable spatial information. In contrast to the existing Histogram of Oriented Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient orientation) only, we additionally consider the histogram of the secondary edge direction, which provides more meaningful shape information related to the local texture. Experiments on popular facial expression datasets demonstrate the superior performance of the proposed HPED against existing descriptors in a person-independent environment.
본 논문에서는 1m 해상도의 위성 영상에서 스테레오 정합의 성능을 향상시키기 위해 그레디언트 히스토그램을 이용하여 정합 창틀의 크기를 자동적으로 결정하는 방법을 제안한다. 영상의 각 화소에 대해 4-neighbor에 위치한 화소의 수평 또는 수직 방향의 평균 그레디언트 값을 계산하여 평탄화 지수 영상(Flatness Index Image)을 생성한다. 강한 에지 화소는 높은 평탄화 지수를 가지며 반면에 비에지 화소의 경우에는 낮은 평탄화 지수를 가진다. 평탄화 지수 영상의 히스토그램을 이용하여 각 화소의 에지 또는 비에지 화소 여부를 결정하는 평탄화 임계값을 구한다. 각 화소의 평탄화 지수가 평탄화 임계값보다 크면 에지화소로, 작으면 비에지 화소로 분류한다. 초기 정합 창틀 내에 존재하는 비에지 화소의 비율이 작으면 밝기 값 변화가 적은 영역으로 판정하고 정합 창틀의 크기를 더 크게 설정하고 이 과정을 정합 창틀이 최대 크기에 도달할 때까지 반복적으로 수행한다. IKONOS 스테레오 위성영상을 실험영상으로 사용하였으며 고정크기의 정합 창틀을 이용한 방법에 비해 향상된 정합 결과를 얻었다.
본 논문은 영상에서 효과적으로 보행자를 삭제하는 자동 삭제 시스템을 제안한다. 첫 번째로 Histogram of Oriented Gradient(HOG) / Linear-Support Vector Machine(L-SVM)분류기를 이용하여 보행자를 찾고, 참조영상으로부터 적절한 배경을 습득하여 삭제될 보행자를 대체한다. 배경은 참조영상 내에서 검색하며 변경된 feather blender 연산은 대체 영역의 경계를 자연스럽게 만든다. 기존에 존재하던 대부분의 시스템이 수동인 것에 반해 제안된 시스템은 자동으로 객체를 검출하고 자연스러운 배경을 생성한다. 실험결과 대체된 영역의 PSNR 평균은 19.246으로 측정되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.