• 제목/요약/키워드: Gradient descent

검색결과 339건 처리시간 0.034초

A New Block-based Gradient Descent Search Algorithm for a Fast Block Matching (고속 블록 정합을 위한 새로운 블록 기반 경사 하강 탐색 알고리즘)

  • 곽성근
    • Journal of the Korea Computer Industry Society
    • /
    • 제4권10호
    • /
    • pp.731-740
    • /
    • 2003
  • Since motion estimation remove the redundant data to employ the temporal correlations between adjacent frames in a video sequence, it plays an important role in digital video coding. And in the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the small-cross search pattern and the block-based gradient descent search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the small-cross search pattern, and then quickly finds the other motion vectors that are not close to the center of search window using the block-based gradient descent search pattern. Through experiments, compared with the block-based gradient descent search algorithm(BBGDS), the proposed search algorithm improves as high as 26-40% in terms of average number of search point per motion vector estimation.

  • PDF

Gradient Descent Approach for Value-Based Weighting (점진적 하강 방법을 이용한 속성값 기반의 가중치 계산방법)

  • Lee, Chang-Hwan;Bae, Joo-Hyun
    • The KIPS Transactions:PartB
    • /
    • 제17B권5호
    • /
    • pp.381-388
    • /
    • 2010
  • Naive Bayesian learning has been widely used in many data mining applications, and it performs surprisingly well on many applications. However, due to the assumption that all attributes are equally important in naive Bayesian learning, the posterior probabilities estimated by naive Bayesian are sometimes poor. In this paper, we propose more fine-grained weighting methods, called value weighting, in the context of naive Bayesian learning. While the current weighting methods assign a weight to each attribute, we assign a weight to each attribute value. We investigate how the proposed value weighting effects the performance of naive Bayesian learning. We develop new methods, using gradient descent method, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general Naive bayesian, and the value weighting method showed better in most cases.

Model Reference Adaptive Control Using Non-Euclidean Gradient Descent

  • Lee, Sang-Heon;Robert Mahony;Kim, Il-Soo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.330-340
    • /
    • 2002
  • In this Paper. a non-linear approach to a design of model reference adaptive control is presented. The approach is demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that the modelled plant dynamics do in fact match the true plant dynamics. The performance of the proposed scheme is compared to a traditional model reference adaptive control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

A survey on parallel training algorithms for deep neural networks (심층 신경망 병렬 학습 방법 연구 동향)

  • Yook, Dongsuk;Lee, Hyowon;Yoo, In-Chul
    • The Journal of the Acoustical Society of Korea
    • /
    • 제39권6호
    • /
    • pp.505-514
    • /
    • 2020
  • Since a large amount of training data is typically needed to train Deep Neural Networks (DNNs), a parallel training approach is required to train the DNNs. The Stochastic Gradient Descent (SGD) algorithm is one of the most widely used methods to train the DNNs. However, since the SGD is an inherently sequential process, it requires some sort of approximation schemes to parallelize the SGD algorithm. In this paper, we review various efforts on parallelizing the SGD algorithm, and analyze the computational overhead, communication overhead, and the effects of the approximations.

An Adaptive PID Controller Design based on a Gradient Descent Learning (경사 감소 학습에 기초한 적응 PID 제어기 설계)

  • Park Jin-Hyun;Kim Hyun-Duck;Choi Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제10권2호
    • /
    • pp.276-282
    • /
    • 2006
  • PID controller has been widely used in industry. Because it has a simple structure and robustness to modeling error. But it is difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose an adaptive PID controller based on a gradient descent learning. This algorithm has a simple structure like conventional PID controller and a robustness to system parameters variation and different velocity command. To verify performances of the proposed adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제12권9호
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.

Pan evaporation modeling using deep learning theory (Deep learning 이론을 이용한 증발접시 증발량 모형화)

  • Seo, Youngmin;Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.392-395
    • /
    • 2017
  • 본 연구에서는 일 증발접시 증발량 산정을 위한 딥러닝 (deep learning) 모형의 적용성을 평가하였다. 본 연구에서 적용된 딥러닝 모형은 deep belief network (DBN) 기반 deep neural network (DNN) (DBN-DNN) 모형이다. 모형 적용성 평가를 위하여 부산 관측소에서 측정된 기상자료를 활용하였으며, 증발량과의 상관성이 높은 기상변수들 (일사량, 일조시간, 평균지상온도, 최대기온)의 조합을 고려하여 입력변수집합 (Set 1, Set 2, Set 3)별 모형을 구축하였다. DBN-DNN 모형의 성능은 통계학적 모형성능 평가지표 (coefficient of efficiency, CE; coefficient of determination, $r^2$; root mean square error, RMSE; mean absolute error, MAE)를 이용하여 평가되었으며, 기존의 두가지 형태의 ANN (artificial neural network), 즉 모형학습 시 SGD (stochastic gradient descent) 및 GD (gradient descent)를 각각 적용한 ANN-SGD 및 ANN-GD 모형과 비교하였다. 효과적인 모형학습을 위하여 각 모형의 초매개변수들은 GA (genetic algorithm)를 이용하여 최적화하였다. 그 결과, Set 1에 대하여 ANN-GD1 모형, Set 2에 대하여 DBN-DNN2 모형, Set 3에 대하여 DBN-DNN3 모형이 가장 우수한 모형 성능을 나타내는 것으로 분석되었다. 비록 비교 모형들 사이의 모형성능이 큰 차이를 보이지는 않았으나, 모든 입력집합에 대하여 DBN-DNN3, DBN-DNN2, ANN-SGD3 순으로 모형 효율성이 우수한 것으로 나타났다.

  • PDF

Development of Railway Vibration Evaluation System Using Actual Railway Vibration Database (실측 철도 진동 데이터베이스를 이용한 철도진동 평가 시스템 개발)

  • Lee, Hyunjun;Seo, Eun Seong;Hwang, Young Sup
    • KIPS Transactions on Software and Data Engineering
    • /
    • 제8권4호
    • /
    • pp.153-162
    • /
    • 2019
  • Recently, it is necessary to develop a technology for quantitatively evaluating railway vibration to prevent civil complaints about orbital structures caused by railway noise and normal operation of ultra-precise equipment of orbital industrial complexes. The existing analytical method requires a very complicated dynamic response model, and it is difficult to secure the reliability of the result due to the inaccuracy of the demand model. Therefore, in this paper, we propose a railway vibration evaluation algorithm and system that deduce the vibration value generated from railway operation by using Linear Regression and Gradient Descent technique based on actual measurement railway vibration database that classifies factors affecting railway vibration. The prediction results obtained by the proposed algorithm show higher efficiency and accuracy than the existing analytical methods.

GLOBAL CONVERGENCE OF AN EFFICIENT HYBRID CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION

  • Liu, Jinkui;Du, Xianglin
    • Bulletin of the Korean Mathematical Society
    • /
    • 제50권1호
    • /
    • pp.73-81
    • /
    • 2013
  • In this paper, an efficient hybrid nonlinear conjugate gradient method is proposed to solve general unconstrained optimization problems on the basis of CD method [2] and DY method [5], which possess the following property: the sufficient descent property holds without any line search. Under the Wolfe line search conditions, we proved the global convergence of the hybrid method for general nonconvex functions. The numerical results show that the hybrid method is especially efficient for the given test problems, and it can be widely used in scientific and engineering computation.

A NEW CLASS OF NONLINEAR CONJUGATE GRADIENT METHOD FOR UNCONSTRAINED OPTIMIZATION MODELS AND ITS APPLICATION IN PORTFOLIO SELECTION

  • Malik, Maulana;Sulaiman, Ibrahim Mohammed;Mamat, Mustafa;Abas, Siti Sabariah;Sukono, Sukono
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.811-837
    • /
    • 2021
  • In this paper, we propose a new conjugate gradient method for solving unconstrained optimization models. By using exact and strong Wolfe line searches, the proposed method possesses the sufficient descent condition and global convergence properties. Numerical results show that the proposed method is efficient at small, medium, and large dimensions for the given test functions. In addition, the proposed method was applied to solve practical application problems in portfolio selection.