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GLOBAL CONVERGENCE OF AN EFFICIENT HYBRID

CONJUGATE GRADIENT METHOD

FOR UNCONSTRAINED OPTIMIZATION

Jinkui Liu and Xianglin Du

Abstract. In this paper, an efficient hybrid nonlinear conjugate gra-
dient method is proposed to solve general unconstrained optimization
problems on the basis of CD method [2] and DY method [5], which pos-
sess the following property: the sufficient descent property holds without
any line search. Under the Wolfe line search conditions, we proved the
global convergence of the hybrid method for general nonconvex functions.
The numerical results show that the hybrid method is especially efficient
for the given test problems, and it can be widely used in scientific and
engineering computation.

1. Introduction

The primary objective of this paper is to study the global convergence prop-
erty and practical computational performance of a new hybrid conjugate gradi-
ent method with the Wolfe line search for nonlinear unconstrained optimization.

Consider the following unconstrained optimization problem

(1.1) min
x∈Rn

f(x),

where f : R
n → R is smooth and its gradient is available. The conjugate

gradient method is very useful for solving (1.1) especially when n is large, and
has the following iterative formulas:

(1.2) xk+1 = xk + αkdk,

dk =

{

−gk, k = 1,
−gk + βkdk−1, k ≥ 2,

(1.3)

where xk is the current iteration point, gk is the gradient of f at xk, αk is
a positive scalar and called the steplength which is determined by some line
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search, dk is the search direction, and βk is a scalar. There are many ways to
select βk, and some well-known formulas are given by

βPRP
k =

gTk yk−1

‖gk−1‖2
(Polak-Ribiere-Polak [9], [8]),(1.4)

βDY
k =

‖gk‖
2

dTk−1
yk−1

(Dai-Yuan [2]),(1.5)

βCD
k = −

‖gk‖
2

dTk−1
gk−1

(Fletcher [5]),(1.6)

respectively, where ‖ · ‖ is the Euclidean norm and yk−1 = gk − gk−1. The cor-
responding methods are called the PRP method, DY method and CD method,
respectively.

In the convergence analysis and implementations of conjugate gradient meth-
ods, one often requires the line search to satisfy the strong Wolfe line search
conditions, namely

(1.7) f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk,

(1.8) |g(xk + αkdk)
T dk| ≤ −σgTk dk,

where 0 < δ < σ < 1. The PRP method is regarded as the best one in practical
computation. However, the PRP method has no global convergence in some
situations. So some people have studied modified PRP methods. For example,
Gilbert and Nocedal [6] proved that the conjugate gradient method with βk =
max{βPRP

k , 0} converged globally (The corresponding method is the famous
PRP+ method), where the strong Wolfe line search and the sufficient descent
condition were satisfied. Dai and Yuan [2] proved that the DY method could
produce a descent search direction at every iteration and converge globally,
where the line search satisfied the Wolfe line search conditions, namely, (1.7)
and

(1.9) g(xk + αkdk)
Tdk > σgTk dk,

where 0 < δ < σ < 1. Dai and Yuan [4] proved the CD method could ensure
all search direction downhill, as long as the strong Wolfe line search conditions
were satisfied. Dai [1] proposed a new conjugate gradient method in which

βk =
‖gk‖

2

max{dTk−1
yk−1,−dTk−1

gk−1}
,

and proved the global convergence under the nonmonotone line search. Wei,
Yao and Liu [10] gave a new conjugate gradient method where the parameter
βk satisfies the following formula:

βV PRP
k =

gk(gk −
‖gk‖

‖gk−1‖
gk−1)

‖gk−1‖2
.
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They discussed the global convergence of the VPRP under the exact line search,
the Wolfe line search and the Grippo Lucidi line search, respectively. The
corresponding method is called the VPRP method in this paper.

The aim of this paper is to choose βk to ensure that dk is a descent direction
and, at the same time, ensure the global convergence.

Under the inexact line searches, based on the effectively global convergence
of the DY method and the well descent property of the CD method, we choose
βk to satisfy:

βk =























0, if dTk−1gk ≤ σdTk−1gk−1,

βCD
k , if σdTk−1gk−1 < dTk−1gk ≤ 0,

βDY
k , if 0 < dTk−1gk < µdTk−1(gk − gk−1),

µ‖gk‖
2/dTk−1gk, if dTk−1gk ≥ µdTk−1(gk − gk−1),

(1.10)

where 0 < µ ≤ σ. In this paper, the corresponding descent method is called
as CDY method, and we can prove that the CDY method has the sufficient
descent property and the global convergence property.

2. The descent property

In order to prove the global convergence of the CDY method, the objective
function f(x) satisfies the following assumption.

Assumption (H):
(1) f(x) is bounded from below on the level set Ω = {x | f(x) ≤ f(x1)}.
(2) The objective function f(x) is continuously differentiable, and its gra-

dient g(x) is Lipschitz continuous on the open set Γ containing Ω, i.e., there
exists a constant L > 0 such that

(2.1) ‖g(x)− g(y)‖ ≤ L‖x− y‖ for all x, y ∈ Γ.

CDY method:
Data: x1 ∈ R

n, ε ≥ 0.
Step 1: Set d1 = −g1 , if ||g1|| ≤ ε, then stop.
Step 2: Compute αk by some inexact line search.
Step 3: Let xk+1 = xk + αkdk, gk+1 = g(xk+1), if ||gk+1|| ≤ ε, then stop.
Step 4: Compute βk+1 by (1.10), and generate dk+1 by (1.3).
Step 5: Set k = k + 1, go to Step 2.

In most references, we can see that the sufficient descent condition

gTk dk ≤ −c‖gk‖
2, c > 0

is always given which plays a vital role in guaranteeing the global convergence
properties of conjugate gradient methods. Furthermore, we have the following
lemma which illustrates that the CDY method has the sufficient property for
any line search.
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Lemma 1. Consider the iteration (1.2)-(1.3), where αk is computed by any

inexact line search, and βk satisfies (1.10). Then if gk 6= 0 for k ≥ 1, we have

that

(2.2) gTk dk ≤ −‖gk‖
2 for ∀ ≥ 1.

Proof. To obtain this result, we divide the proof into four aspects as follows.
(i) If dTk−1gk ≤ σgTk−1dk−1, we get βk = 0. By multiplying (1.3) with gk, we

have

(2.3) gTk dk = −‖gk‖
2 + βkg

T
k dk−1.

Obviously, gTk dk = −‖gk‖
2 < 0.

(ii) If σgTk−1dk−1 < gTk dk−1 ≤ 0, then βk = βCD
k . From (1.6), we have

βk = βCD
k > 0. From (2.3), we easily have gTk dk ≤ −‖gk‖

2 < 0.
(iii) If 0 < gTk dk−1 < µdTk−1(gk− gk−1), we have βk = βDY

k . Then from (2.3)
and (1.5), we have

(2.4) gTk dk = −‖gk‖
2 +

‖gk‖
2

dTk−1
(gk − gk−1)

· dTk−1gk.

From (2.4) and 0 < gTk dk−1 < µdTk−1(gk − gk−1), we have

gTk dk < −‖gk‖
2 +

‖gk‖
2

1

µ
· dTk−1

gk
· dTk−1gk = −(1− µ)‖gk‖

2 < 0.

(iv) If gTk dk−1 ≥ µdTk−1(gk − gk−1), we have βk = µ‖gk‖
2/dTk−1gk. Then

from (2.3), we have

gTk dk = −‖gk‖
2 + µ‖gk‖

2 = −(1− µ)‖gk‖
2 ≤ −(1− σ)‖gk‖

2 < 0.

This completes the proof of Lemma 1. �

3. Global convergence

In this section, we will study the global convergence of the CDY method with
the Wolfe line search. The following lemma, often called the Zoutendijk con-
dition, is used to prove the global convergence of nonlinear conjugate gradient
methods. It was originally given by Zoutendijk [11].

Lemma 2. Suppose Assumption (H) holds. Consider any iteration of the form

(1.2)-(1.3), where dk satisfies dTk gk < 0 for k ∈ N and αk satisfies the Wolfe

line search (1.7) and (1.9). Then

(3.1)
∑

k≥1

(gTk dk)
2

‖dk‖2
< +∞.

Theorem 3. Suppose that Assumption (H) holds. Consider any iteration of

the form (1.2)-(1.3), where βk is computed by (1.10) and αk satisfies the Wolfe

line search (1.7) and (1.9). Then we have either gk = 0 for some k, or

(3.2) lim inf
k→+∞

‖gk‖ = 0.
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Proof. If gk = 0 holds for some finite k, then we know that xk is a stationary
point. Otherwise, we prove the conclusion (3.2) by contradiction.

Suppose that (3.2) dose not hold. This means that the gradients remain
bounded away from zero, and hence there exists γ > 0 such that

(3.3) ‖gk‖ ≥ γ for ∀ k ≥ 1.

From (1.9) and (2.2), we have

(3.4) dTk−1(gk − gk−1) ≥ −(1− σ)dTk−1gk−1 > 0.

In the following, we will prove that βk ≤ βDY
k holds, for ∀ k ≥ 1.

First, if σgTk−1dk−1 ≤ gTk dk−1 ≤ 0, then we have βk = βCD
k and

(3.5)
−gTk−1dk−1 ≥ −gTk−1dk−1 + gTk dk−1

≥ −(1− σ)dTk−1gk−1.

From (1.5), (1.6) and (3.5), we have

(3.6) βk = βCD
k ≤ βDY

k .

Second, if 0 < gTk dk−1 < µdTk−1(gk − gk−1), then form (1.10), we have

(3.7) βk = βDY
k .

Third, if gTk dk−1 ≥ µdTk−1(gk−gk−1), from (3.4), we have µdTk−1(gk−gk−1) > 0.
Then

(3.8) βk = µ‖gk‖
2/dTk−1gk ≤ βDY

k .

Y. H. Dai and Y. Yuan [3] gives an equivalent formula to (1.5):

(3.9) βDY
k =

gTk dk

gTk−1
dk−1

.

What’s more, if dTk−1gk < σgTk−1dk−1, we have βk = 0. So from (3.6)-(3.9), we
can get

(3.10) βk ≤
gTk dk

gTk−1
dk−1

for ∀ k ≥ 1.

On the one hand, writing (1.3) as dk + gk = βkdk−1 and squaring it, we get

‖dk‖
2 = −‖gk‖

2 − 2gTk dk + (βk)
2‖dk−1‖

2.

From (3.10), we have

‖dk‖
2 ≤ −‖gk‖

2 − 2gTk dk +

(

gTk dk
gTk−1

dk−1

)2

‖dk−1‖
2.
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Dividing above inequality by (gTk dk)
2, we have

(3.11)

‖dk‖
2

(gTk dk)
2
≤

‖dk−1‖
2

(gTk−1
dk−1)2

−

(

‖gk‖

gTk dk
+

1

‖gk‖

)2

+
1

‖gk‖2

≤
‖dk−1‖

2

(gTk−1
dk−1)2

+
1

‖gk‖2
.

Using (3.11) recursively and noting that ‖d1‖
2 = −gT1 d1 = ‖g1‖

2, we get

(3.12)
‖dk‖

2

(gTk dk)
2
≤

k
∑

i=1

1

‖gk‖2
.

Then we get from this and (3.3) that

(3.13)
(gTk dk)

2

‖dk‖2
≥

γ2

k
,

which indicates

(3.14)
∑

k≥1

(gTk dk)
2

‖dk‖2
= +∞.

This contradicts the Zoutendijk condition (3.1). Therefore the conclusion (3.2)
holds. �

Corollary. Suppose that Assumption (H) holds. Consider any iteration of the

form (1.2)-(1.3), where βk is computed by (1.10) and αk satisfies the strong

Wolfe line search (1.7)-(1.8). Then we have either gk = 0 for some k, or

(3.15) lim inf
k→+∞

‖gk‖ = 0.

Proof. If αk satisfies the strong Wolfe line search (1.7)-(1.8), then αk must
satisfy the Wolfe line search (1.7) and (1.9). Therefore the statement follows
Theorem 3. �

4. Numerical results

The purpose of this section is to present computational supports for the
CD method, DY method, PRP+ method, VPRP method and CDY(µ = 10−6)
method. Under the strong Wolfe line searches, the methods were tested for
a set of standard unconstrained minimization test problems from [7], where
δ = 0.01, σ = 0.1. The termination condition of the experiments is ‖gk‖ ≤ ε,
where ε = 10−6.

The test problems are listed in Table 1, and the detail numerical results
of our tests are reported in Tables 2-4. In Tables, “Number” and “Name”
denote the problem number and problem name, respectively. “Dim” denotes
the dimension of the test problems. “——” means the method fails. In Table
2, the detailed numerical results are listed in the form NI/NF/NG, where NI,
NF, NG denote the number of iterations, function evaluations, and gradient
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Table 1. List of test problems

Number Name
1 Freudenstein and Roth function
2 Beale function
3 Helical valley function
4 Gulf research and development function
5 Powell singular function
6 Wood function
7 Kowalik and Osborne function
8 Brown and Dennis function
9 Watson function
10 Penalty function I
11 Trigonometric function
12 Extended Powell singular function
13 Discrete boundary value function
14 Discrete integral equation function
15 Broyden tridiagonal function

Table 2. The numerical results of the methods

Number Dim CD DY PRP+ VPRP CDY
1 2 51/187/152 42/168/138 11/72/56∗ 15/90/70 11/76/57
2 2 73/177/155 75/186/164 13/58/45∗ 21/65/47 15/57/44
3 3 56/157/132 37/118/98∗ 65/181/156 57/174/146 45/147/123
4 3 1/2/2∗ 1/2/2∗ 1/2/2∗ 1/2/2∗ 1/2/2∗

5 4 421/1036/947 2286/4555/4545 113/379/328 87/300/253∗ 102/383/333
6 4 184/438/399 100/291/240 118/357/304 236/608/543 78/278/230∗

7 4 254/723/633 536/1449/1271 93/269/240 66/228/197∗ 68/249/220
8 4 44/171/133 39/158/121 37/156/123∗ —— 41/178/136
9 5 87/277/239∗ 127/348/299 133/374/330 130/377/324 402/1208/1062

15 4377/12694/11221 1845/5658/4924 3290/10457/9244 1800/5631/4954∗ 2288/7973/7044
10 100 62/223/182 31/157/121 29/168/128∗ 34/224/170 33/195/152

200 25/159/117 26/160/121 25/175/132 34/239/181 24/167/125∗

11 100 —– 306/401/400 58/120/113 56/145/119 56/137/121∗

200 —– 315/399/398 64/135/128 58/126/122∗ 64/160/146
12 500 748/1780/1689 2778/5384/5374 105/342/297 178/612/526 100/379/324∗

1000 578/1419/1292 4329/8191/18168 198/693/595 106/355/305∗ 154/623/552
13 500 5089/7049/7048 4796/6823/6822 1645/2889/2888 1461/2534/2533 219/491/466∗

1000 2406/3114/3113 414/449/448 147/251/250 157/275/274 38/69/64∗

14 500 7/15/8 7/15/8 6/13/7∗ 7/15/8 7/15/8
1000 7/15/8 7/15/8 6/13/7∗ 7/15/8 7/15/8

15 500 52/112/107 49/106/101 35/78/74 35/78/73 33/75/60∗

1000 70/149/145 64/137/133 34/76/72 36/81/77 32/75/61∗

evaluations, respectively. The star “∗” denotes that this result is best one
among these methods. In Table 3, CPU times of the methods are given. The
final values and standard values are reported in Table 4. “Standard” means
standard value of the test problem.

Tables 2-3 show that the CDY method has the best performance with respect
to the number of iterations and the CPU time. What is more, Table 4 also
show that the CDY method relative to the final values of the test problems is
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comparable with that of the PRP+ method and VPRP method. All numerical
results show that the efficiency of the CDY method is encouraging.

Table 3. The corresponding CPU times of the methods

Number Dim CD DY PRP+ VPRP CDY
1 2 0.1863 0.1675 0.0510 0.0494 0.0452∗

2 2 0.2517 0.3000 0.0714∗ 0.0735 0.0720
3 3 0.1985 0.1263∗ 0.4376 0.1982 0.2531
4 3 0.0036 0.0037 0.0033 0.0034 0.0009∗

5 4 2.5067 8.9351 0.7034 0.3132∗ 0.3892
6 4 0.7156 0.4189 0.5263 1.2076 0.3787∗

7 4 0.6112 2.1098 0.4172 0.3289∗ 0.3579
8 4 0.1614∗ 0.3521 0.2172 —— 0.2364
9 5 0.3142∗ 0.5312 0.6102 0.5762 2.2067

15 16.9905 6.0000∗ 10.9487 6.8933 7.5893
10 100 0.5118 0.2325 0.2712 0.3102 0.2136∗

200 0.3952 0.4015 0.4306 0.6212 0.3657∗

11 100 —— 1.9000 0.4573 0.4384 0.3899∗

200 —— 6.5000 1.8896∗ 1.9796 1.9860
12 500 12.9834 32.8723 2.4000 3.5617 2.2670∗

1000 28.7000 43.2000 7.3000 6.7891∗ 11.2701
13 500 58.1386 55.4843 27.8092 21.1132 8.7861∗

1000 39.6372 13.0000 6.1000 7.2000 1.8963∗

14 500 2.1428 2.1554 1.8556∗ 2.1450 1.9325
1000 8.5477 9.7059 7.3761∗ 8.5380 8.3450

15 500 0.7284 0.6892 0.5063 0.5092 0.5011∗

1000 3.6011 3.1574 1.6478 1.7671 1.4968∗

Table 4. The final values and standard values of the methods

Number Dim CD DY PRP+ VPRP CDY Standard
1 2 48.9843∗ 48.9843∗ 48.9843∗ 48.9843∗ 48.9843∗ 48.9842
2 2 2.0949e-013 7.5278e-014 5.7209e-016 3.1303e-019∗ 3.4197e-014 0
3 3 1.7392e-015∗ 1.2045e-014 7.5337e-015 5.2175e-015 4.5381e-015 0
4 3 0.0385∗ 0.0385∗ 0.0385∗ 0.0385∗ 0.0385∗ 0
5 4 1.7630e-010 2.8606e-011 1.4371e-012∗ 5.2126e-010 2.0535e-011 0
6 4 4.6149e-014 2.6023e-014∗ 3.0109e-013 2.6463e-014 8.6269e-014 0
7 4 3.0751e-004∗ 3.0751e-004∗ 3.0751e-004∗ 3.0751e-004∗ 3.0751e-004∗ 3.07505e-004
8 4 8.5822e+004∗ 8.5822e+004∗ 8.5822e+004∗ —— 8.5822e+004∗ 8.5822e+004
9 5 0.0172∗ 0.0172∗ 0.0172∗ 0.0172∗ 0.0172∗ 0.0172

15 1.6303e-009 2.8710e-010 3.4585e-008 3.7954e-008 4.0916e-010∗ 4.7224e-010
10 100 9.0249e-004∗ 9.0249e-004∗ 9.0249e-004∗ 9.0249e-004∗ 9.0249e-004∗ 9.0249e-004

200 0.0019∗ 0.0019∗ 0.0019∗ 0.0019∗ 0.0019∗ 0.0019
11 100 —— 1.8410e-006∗ 1.8410e-006∗ 1.8410e-006∗ 1.8410e-006∗ 0

200 —— 1.0051e-006∗ 1.1542e-006 1.1542e-006 1.1542e-006 0
12 500 4.4691e-010 3.1934e-010 4.3989e-011∗ 7.3238e-010 7.8245e-010 0

1000 9.9418e-010 4.5246e-010 1.2283e-010 5.9312e-011∗ 6.2169e-011 0
13 500 9.2306e-009 7.4621e-009 8.9750e-009 9.0694e-009 1.0275e-009∗ 0

1000 1.2344e-009∗ 1.2373e-009 1.2644e-009 1.2616e-009 1.2926e-009 0
14 500 1.0452e-013 1.1936e-013 1.4385e-015 1.2338e-015∗ 1.1623e-014 0

1000 2.0882e-013 5.7282e-015 2.8738e-015 2.4651e-015∗ 2.3219e-014 0
15 500 1.3526e-014 1.1159e-014 6.6559e-015∗ 7.4750e-015 7.1464e-015 0

1000 9.6485e-015 1.0529e-014 1.1090e-014 4.4833e-015 3.9079e-015∗ 0
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