• Title/Summary/Keyword: Gradient Search Method

Search Result 130, Processing Time 0.024 seconds

The Optimum Design for PSC Box Girder Bridges Considering Friction Coefficient and Material Strength (마찰계수와 재료강도를 고려한 PSC 박스 거더교의 최적설계)

  • Kim, Ki Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.181-189
    • /
    • 2006
  • This study analyzes the effects of the curvature friction coefficient, the wobble friction coefficient, and the increased strength of concrete, reinforced tendon on optimum de signs by using the optimum-design program, to minimize the cost of a PSC box girder bridge using the full staging method. The objective of this study is to find a proper tendon for the friction coefficient, and thereafter, to indicate the direction of the study development about tendons and to indicate the direction of a study on the increased strength of used materials. This program used the SUMT procedure and Kavlie's extended-penalty function to allow infeasible design points in the process. Powel's direct method was used in searching design points, and the gradient approximate method was used to reduce the design hours.

AN OPTIMAL BOOSTING ALGORITHM BASED ON NONLINEAR CONJUGATE GRADIENT METHOD

  • CHOI, JOOYEON;JEONG, BORA;PARK, YESOM;SEO, JIWON;MIN, CHOHONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • Boosting, one of the most successful algorithms for supervised learning, searches the most accurate weighted sum of weak classifiers. The search corresponds to a convex programming with non-negativity and affine constraint. In this article, we propose a novel Conjugate Gradient algorithm with the Modified Polak-Ribiera-Polyak conjugate direction. The convergence of the algorithm is proved and we report its successful applications to boosting.

A New Design of Signal Constellation of the Spiral Quadrature Amplitude Modulation (나선 직교진폭변조 신호성상도의 새로운 설계)

  • Li, Shuang;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.398-404
    • /
    • 2020
  • In this paper, we propose a new design method of signal constellation of the spiral quadrature amplitude modulation (QAM) exploiting a modified gradient descent search algorithm and its binary mapping rule. Unlike the conventional method, the new method, which uses and the constellation optimization algorithm and the maximum number of iterations as a parameter for the iterative design, is more robust to phase noise. And the proposed binary mapping rule significantly reduces the average Hamming distance of the spiral constellation. As a result, the proposed spiral QAM constellation has much improved error performance compared to the conventional ones even in a very severe phase noise environment. It is, therefore, considered that the proposed QAM may be a useful modulation format for coherent optical communication systems and orthogonal frequency division multiplexing (OFDM) systems.

Adaptive control with multiple model (using genetic algorithm)

  • Kwon, Seong-Chul;Park, Juhyun;Won, Sangchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.331-334
    • /
    • 1996
  • It is a well-known problem that the adaptive control has a poor transient response. In order to improve this problem, the scheme that model-reference adaptive control (MRAC) uses the genetic algorithm (GA) in the search for parameters is proposed. Use genetic algorithm (GA) in the searching for controller's parameters set and conventional gradient method for fine tuning. And show the reduction of the oscillations in transient response comparing with the conventional MRAC.

  • PDF

A study on the improvement of the EBP learning speed using an acceleration algorithm (가속화 알고리즘을 이용한 EBP의 학습 속도의 개선에 관한 연구)

  • Choi, Hee-Chang;Kwon, Hee-Yong;Hwang, Hee-Yeung
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.457-460
    • /
    • 1989
  • In this paper, an improvement of the EBP(error back propagation) learning speed using an acceleration algorithm is described. Using an acceleration algorithm known as the Partan method in the gradient search algorithm, learning speed is 25% faster than the original EBP algorithm in the simulaion results.

  • PDF

Adaptive Eigensubspace Estimation Algorithm for Direction Finding Problem (입사각 추정을 위한 고유 부공간 적응 추정 알고리듬)

  • 성하종;박영철;이충용;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.42-50
    • /
    • 1998
  • 본 논문에서는 Gram-Schmidt 구조와 Inverse Power Method를 이용한 고유 부공간 추정 방법을 제안하고 입사각을 추정하는 문제에 적용하여 성능을 평가하였다. 그리고, 어레 이 센서들이 가운데를 중심으로 대칭으로 배열되어 있을 때, 전후방 GS 필터를 이용한 향 상된 고유 부공간 방법을 제안하였다. 그리고, 제안한 방법들을 제한조건을 갖는 gradient search 방법과 비교하였다.

  • PDF

NUCLEAR REACTOR CONTROL USING TUNABLE FUZZY LOGIC CONTROLLERS

  • Alang-Rashid, N.K.;Sharif-Heger, A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1062-1065
    • /
    • 1993
  • Nuclear reactor operation is a human intensive task; one of the features of a problem for which fuzzy controllers present the most suitable solution. The performance of the fuzzy controllers can further be improved through tuning. In this work, application of a fuzzy controller in real-time control of a nuclear reactor is presented. The fuzzy controller is tuned on-line using direct gradient search method.

  • PDF

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.

The Detection of the Internal Defect in the Glass Using Auto Focusing Method (자동 초점 기법을 이용한 유리 내부 결함 검출)

  • Jy, Yong-Woo;Jhang, Kyung-Young;Jung, Ji-Hwa;Kim, Suk-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1047-1054
    • /
    • 2004
  • Internal defects in the glass, like-as micro-voids, micro-cracks, or inclusions, easily cause the failure when the glass is exposed to the shock or the thermal variation. In order to produce the highly reliable glass product, the precision inspection of the defect in the glass is required. For this purpose, this paper proposes a machine vision technique based on the auto-focusing method, which searches the defect and measures the location under the fact that the edge image of defect must be the most clear when the focal plane of CCD camera is coincided with the defect. As for the search index, the gradient indicator is presented. The basic principles are verified through the simulations for the computer-generated defect images, where the affects of defect shape, gray level of background, and the brightness of the defect image are also analyzed. Finally, experimental results for actual glass specimens are shown to confirm the applicability of this method to the actual field.

Assessment of Numerical Optimization Algorithms in Design of Low-Noise Axial-Flow Fan (축류송풍기의 저소음 설계에서 수치최적화기법들의 평가)

  • Choi, Jae-Ho;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1335-1342
    • /
    • 2000
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, incompressible, three-dimensional Reynolds-averaged Navier-Stokes equations are used as governing equations, and standard k- ${\varepsilon}$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Two variables concerning sweep angle distribution are selected as the design variables. Performance of the final fan designed by the optimization was tested experimentally.