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ABSTRACT. Boosting, one of the most successful algorithms for supeddearning, searches
the most accurate weighted sum of weak classifiers. Thetsearcesponds to a convex pro-
gramming with non-negativity and affine constraint. In thiticle, we propose a novel Con-
jugate Gradient algorithm with the Modified Polak-Ribi¢talyak conjugate direction. The
convergence of the algorithm is proved and we report itsesigfal applications to boosting.

1. INTRODUCTION

Boosting refers to constructing a strong classifier basethegiven training set and weak
classifiers, and has been one of the most successful algarftir supervised learning [1, 8, 9].
A first and seminal boosting algorithm, named AdaBoost, wasduced by [3]. AbaBoost can
be understood as a gradient descent algorithm to minimemtrgin, a measure of confidence
of the strong classifier [3, 7, 10].

Though simple and explicit, Adaboost is still one of the maspular boosting algorithms
for classification and supervised learning. According todhalysis by [10], Adaboost tries to
minimize a smooth margin. The hard margin refers to a direct ef the confidence of each
data, and the soft margin takes the log-sum-exponentiatibm LPBoost invented by [2, 4]
minimizes the hard margin, resulting in a linear prograngminis observed that LPBoost does
not perform well in most cases compared to Adaboost [11].

The strong classifier is a weighted sum of the weak classifidadaboost determines the
weight by the stagewise and unconstrained gradient destdaboost increases the support of
the weight one-by-one for each iteration. Due to the staggwa@arch and the stop of its search
when the support is enough, Adaboost is not the optimal kearc

The optimal solution needs to be sought among all the linearbinations of weak classi-
fiers. The optimization becomes valid with a constraint thah of the weights is bounded,
and the bound was observed to be proportional to the supgerofthe weight [11].
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In this article, we propose a new and efficient algorithm #@tes the constrained opti-
mized problem. Our algorithm is based on the Conjugate-i&nadnethod with non-negativity
constraint by [5]. They showed the convergence of CG withtbdified Polak-Ribiera-Polyak
(MPRP) conjugate direction.

The optimization that arise in Boosting has the non-neijatoonstraint and an affine con-
straint. Our novel algorithm extends the CG with non-nefatio hold the affine constraint.
The addition of the affine constraint is a deal as big as adtli@gon-negative constraint.

We present a mathematical setting of boosting in sectiami2duce the novel CG and prove
its convergence in section 3, and report its applicatiorsetach mark problems of boosting in
section 4.

2. MATHEMATICAL FORMULATION OF BOOSTING

In boosting, one is given with a set of training examples, - - - , zas} with binary labels
{yi,--- ,ym} C {£1}, and weak classifierfhi, ho, - - - , hy }. Each weak classifid; gives
a label to each example, and hence itis a functipn {z1,- -,z } — {£1}.

A strong classifier F is made up of a weighted sum of the weadsiflars, so that’ (x) :=
> wjh; (x) for somew € RY with w > 0.

For each example;, alabek-1is put whenF' (z;) > 0, and—1 otherwise. Hence the strong
classifier is successful ar if the sign of F' (x;) matches the given labg}, orsign (F' (z;)) -
y; = +1 and unsuccessful o if sign (F (z;)) - y; = —1.

The hard margin, which is a measure of the fidelity of the gfrdassifier, is thus given as

(Hard margin) :— S"M sign (F () - v
When the margin is smaller, moregn (F' (z;)) - y; are+1, andF' can be said to be more

reliable. Due to the discontinuity present in the hard nrarjie soft margin of Adaboost takes
the form, via the monotonicity of log and exponential,

(Soft margin) :log (ZMI e_F('Ti)'yi>

=
The composition of log-sum-exponential functions is nefdrtolse. Let us denote byl €
{+£11M*N  the matrix whose entry i8i; = hj (x;) - y;. Then the soft margin can be simply
put tolse (—Aw), wherew = [wy, -, wy]”.
The main goal of this work is to find out a weight that minimizlee soft margin, which is
to solve the following optimization problem.

1
minimize lse(—Aw) subject tow > 0and w - 1 = T (2.1)

Here, A € {+1}*" is a given matrix from the training data and weak classifiars
T is a parameter to control the support sizewofWe finish this section with the lemma that
shows that the optimization is a convex programming, and iéntroduce a novel algorithm
to solve the optimization.

Lemma 1. Ise (—Aw) is a convex function with respect i@
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Proof. Given anyw, wcR”Y and anyd € (0,1), letz = —Aw andz = — Ad.
=(1—0)lse(z) + Olse (2)

< log (Z es(1-0). ez?9> by the Hider’s inequality.

3. CONJUGATE GRADIENT METHOD

In this section, we introduce a conjugate gradient methoddtving the convex program-
ming (2.1).
: 1
min f (w) subjecttow > 0andw -1 = T
Throughout this sectionf (w) denotes the convex functidge (—Aw), andg (w) denotes
its gradientV f (w). Letd be the direction at a positiom to seek the next position. When
is located on the boundary of the constraintcannot be moved to a certain directidmue to
the constraintf w € RN | w > 0 andw -1 =1/T'}.
We referd to be feasible atv, if w + ad stays in the constraint set for sufficiently small
a > 0.

Definition 1. (Feasible direction) Given a directiod € R at a positionw € R with
w > 0andw - 1 = 7, the feasible direction’ = d/(d, w) associated with is defiend as the
nearest vector td among the feasible directions at the position. Precisélg defined by the
minimization
d/ =argmin || d—y|| (3.1)
yl(w)EOandy-lzo

wherel(w) = {i | w; = 0} . The domain of the minimization is convex, and the functional
is strictly convex and coercive, so thét is determined uniquely.

Define the index set(w) = {j | w; > 0}.

Lemma 2. Vw withw-1 = £, Vd, letd’ = d/ (d, w), thenw+ad’ > 0and(w + ad’)-1 = £
for sufficiently smalb > 0.
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FIGURE 1. For a given directiod at a positiorw, a colored region is a feasi-
ble region ofd. Sinced/ is the nearest vector thamong the feasible directions
atw, it is the orthogonal projection af onto the colored region (aji/ is de-
composed into two orthogonal component$, = dt + d*, whered! is the
orthogonal projection of/ onto the tangent space (b).

Proof. Clearly, Vo, (w + adf) A=w-140=1/T.
Va>0, ifiel(w), w+ad =0+ad >0, and
if j € J(w), wj—l—ozdf ij—aﬂdﬂ—i—l).
Thus for anya: > 0 with o < minjeJ(w)‘d;”ﬁ, w+ adl > 0. O
J

Proposition 1. (Calculation of the feasible direction) For a given dirawtid at a positionw,
d’is calculated as
df = (di—r)t iel
A =dj—r ,jeJ
wherer isazero offd; —r-15)- 17+ (d, — )" +---+ (dr, — )", k=|T|.
Proof. Sinced/ is the KKT point of(Def.2), there exist\; andy such that

dﬂ—m:[g}—w-LWmd{EOde{:OJﬂlzo.
From these conditions, we géj. =d;—r-1lyandd;, —r = dlf — A\, forie .
If di —r >0, thendlf > 0and); = 0. Thus,dzf =d; —r.

If d; —r <0, thendlf =0and\; > 0.
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Algorithm 1 Computing the feasible directioti/.

Input : w, d

Output :d/

Procedure :

1: Make index set$ (w) = {i|w (i) = 0} andJ (w) = {j|w (§) > 0}

2 : Define a functio (r) = 32, (di — )" + >, (d; — ) . And find

o= argmazx i
i€l,p(d;)>0

6= argmin i
i€1,p(d;)<0

ir«zeroofy . ;(dj —r)+ X icrica (di—7) =D icring (di — 1)
di —maz{0,—d; +r}+r, 1€1

4 : Computed/ as following :dlf = _
d; —r, ieJ

By combining these two, we havid = (d; — )™, fori € I. Sinced/ - 1 = 0,
d1=dl 1,4 dl 1y
:(dJ_T'lJ)'lJ"i'(dll _T)++(d12_r)++"'+(dlk _T)+ = 0.
r is the root of the monotonically decreasing function. Thenotone function is piecewisely

linear, so that the root can be easily obtained by probingrwals betweerdd;,,--- ,dy, }
where the monotone function changes the sign. Afterobtained/is defined as stated.[]

Definition 2. (Tangent Space) The domain feris the simplew | w > 0 andw - 1 = 0}.
Whenw > 0, w is inside and the tangent spae= 1+.Whenw; = 0 andw; > 0 (V5 # i), w
is on the boundary, and the tangent space becomes srfigller {1,¢; | i € I}+. In general,
we define the tangent spacewhsT), := [1 U {e; | w; = 0}]* c RV.

Definition 3. (Orthogonal decomposition of direction) Given a directibe RY on a position

w € RY withw > 0and1-w = 4, the direction is decomposed into three mutually orthogonal
T p y g

vectors; tangential, wall, and non-feasible components.

d=d + (da-df)
—d' +d+ (d-d).

Here,d/ = d/ (d,w) is the feasible directioni’ is its orthogonal projection onto the tangent
spacel,,, andd® = df — d* € T,-. Their mutual orthogonality is proved below.
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Lemma 3. The above vectord', d*, and(d — d’ ) are orthogonal to each other. Furthermore,
d—dl eT;.

Proof. By the definition of the orthogonal projectiod, | d. The KKT condition of the mini-
mization (3.1) is

(df - d) = { )(‘)I } + r1 for someX; > 0 with Ag - d{ = 0 and some with r(d - 1) = 0,
A1
0
Fromd” - (d—df) = df - A\; +r(1-d) = 0, we haved/ Ld— df andd® = d/ —d' L.d —d'
which completes the proof of their mutual orthogonalities.
SinceT, ={1,e;}*+ andd—d/ € spar{1,e;}, d—d’ is orthogonal to the tangent space.]

wherel = I (w). Sinced' € T,, = {1,e;} ", d" [ ] =0andd’-1 = 0, thusd' Ld—d’.

Definition 4. (MPRP direction) Letw be a point withw > 0 andw - 1 = % and let
g = Vf(w). Putting tilde for the variable in the previous step : lgbe the gradient and

d be the search direction in the previous step, then the mdd#idak-Ribiera-Polyak direction
dMPRP — gMPRP (w,g,d) is defined as

JMPRP _ (_g)f (—g)t (g - f])tdt + (—g)t d! (g — g)t

99 99
Theorem 1. (KKT condition)Vw > 0 withw - 1 = %,vg,vci, letg = Vf(w)andd =
dMPRP (w,g,ci), then(—g)” - d > 0. Moreover(—g)’ - d = 0 if and only ifw is a KKT point
of the minimization problem (2.1).

Proof.

= (=0 12+ = [~ [(=)" - (- 3)] [(~9)" -]
+ =9 9-9'] [0 ]
Since(—g)" L T, (—9)" - (9 — 3! =0and(—g)

g p— .
Similarly, (—g)/ - d* = (—g)" - d', and we havé—g)’ - d =|| (~g)’ || 2 >
The KKT condition for 2.1 is that

[,
—~
|
Qe
N—r
<~
Il
—
N
SN—
<
—
o
|
Qe
SN—
<

g = A+ r-1forsomeX > 0 with A-w=0

and some- with r (w -1 — %) =0.
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Algorithm 2 Algorithm based on nonlinear conjugate gradient

Input : Given constants € (0,1),0 > 0,¢e > 0. Initial pointwy > 0. Letk = 0, and
g =V f(wy) wheref = lse (—Aw).

Output :w

Procedure :

1: Computed = (dy,dy) by Algorithm 1.

If ‘(—g)f . d‘ < ¢, then stop.

Otherwise, go to the next step.

2 . Determinex, = max{%pﬂj = 0,1,2,~'}satisfyingw+ad >0
andf (w+ ad) < f(w) —da® || d |

3w+ w+ ad

4: k<« k+1,andgo to step 2.

Sincewy; > 0andX > 0, A\; = 0. Sincew -1 = % andw; = 0, the condtions
r(w-1—%) =0andX-w = A -w; + Ay - wy = 0 are unnecessary. Therefore, the
KKT condition is simplified as

g= [ )E)I ] + r -1 for someA; > 0 and some-.

Onthe other hand—g)’-d =|| (—g)’ ||?= 0ifand only if0 = (—g)/ = argming,>o andy-1-o |
(—g) — y ||, whose KKT condition is that

g= [ )(‘)I ] +r -1 for some)\; > 0 and some..

Each of the two minimization problems has a unique minimummtpaccordingly a unique
KKT condition. Since their KKT conditions are same, we have

(—g)) -d =0 < wis the KKT point of the minimization problem 2.1.

O

Next, we introduce some properties pfw) and Algorithm 2 to prove the global conver-
gence of Algorithm 2.

Properties

LetV:{wGRNMUZOandw-l:%}.

(1) Since the feasible set V is bounded, the levefse RY | f(w) < f(wy)} is bounded.
Thus, f is bounded from below.
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(2) The sequencéwy } generated by Algorithm 2 is a feasible point sequence antutie

tion value sequencgf (wy)} is decreasing. In addition, singéw) is bounded below,

[e.e]
> ai |l di [*< oo
k=0

Thus we have
lim ay || di ||= 0.
k—oo

(3) f is continuously differentiable, and its gradient is theddhpitz continuous; there exists

a constanf. > 0 such that

| Vi(w) =V lI<lz—yl, Yo,y eV
These imply that there exists a constapsuch that
| Vi(w) [£7,VzeV.

Lemma 4. If there exists a constart> 0 such that

I (xx) = €, VE,

then there exists a constamf > 0 such that

| di ||< M, VEk.

Proof.

20| (=9)" Il g =" Il - I d} |
g 17

Il di |

I PR <l (=) 11 +

2y1 Loy, || dt

<+ 7 k2” Al
€

Sincelimy o a; || di || = 0, Ja constanty € (0,1) andky € Z such that

2Lm
2

o1 || db ||< ~ forall k > ko.
Hence, for anyk > ko,
I g™ < 291+ || da ||
<o (T y e 4y TRT) bR gl
27

< dy, |

Let M = maz {||dy |, Il d |-+ , || de, II, 225+ || dy ||} Then|| diPRP ||< M, V.

) T—

O
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Lemma 5. (Success of Line search) In Algorithm 2, the line search seguaranteed to
succeed for each. Precisely speaking,

£ (wy, + agdy) < f (wy) = 6o, || dy |
for all sufficiently smalkyy.
Proof. By the Mean Value Theorem,
[ (wg + agdy) — f (wi) = agg (wi + agbrdy) - di,
for some#d;, € (0,1). The line search is performed only(if-g (wy))’ - di, > €. In Lemma?,
we showed that—g(wy)) — (—g(w))! LT, and(—g(wy)) — (—g(wg))! L(—g(wy))’. Since
di € (—g(wg))’ + T, [(—g(wk)) — (—g(wy))’] - dr, = 0 and we have
—g(wi) - di = (—g(wp))! - di > €.
From the continuity of;(w),
—g (wg + xOrdy) - dy, > g
for sufficiently smallay,. Choosingay, € (O, m) , we get

[ (wi, + agdy) = f (wy) + ang (wi, + ogbrdy) - dy,

Theorem 2. Let{w} and{d; } be the sequence generated by Algorithm 2, then
lim inf (—gg )’ :dj, = 0.
k—o0

Thus the minimum poinb* of our main problem(2.1) is a limit point of the sefwy}and
Algorithm 2 is convergent.

Proof. We first note that—g;.)/ - dj, = —gi - dy that appeared in the proof of Lemma 11. We
prove the theorem by contradiction. Assume that the thedsemot true, then there exists an
€ > 0 such that
I (=g) 1% = (—g&)” - di > ¢, forall &
By Lemma 10, there exists a constaddtsuch that

| di ||I< M, forall k.

If lim infj,_y00 o > 0, thenlimy_oo || di ||= 0. Since|| g |loo< —7, limp—so0 (—gi)” -dj =
0. This contradicts assumption.
If liminf;_, . ap = 0, then there is an infinite index sét such that

lim a5 =0.
keK k—o0
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It follows from the step 2 of Algorithm 2, that whénc K is sulfficiently largep~'a;, does
not satisfyf (wk + Ozkdk) <f (wk) — 50&% H d, H 2, that is

f (w4 p~tawdy) — f (wi) > —0p 20 || di || 2 (3.2)
By the Mean Value Theorem and Lemma 10, therkiis (0, 1) such that

flwg)—f (wk + p_lakdk) = p_lakg (wk + hkp_lakdk) - dp

= p tagg (wy) - di, + p oy, (g (wk + hkp_lakdk) -9 (wk)) - dy

<p larg(wg) - de + Lp~ g, || dy || 2

Substitute the last inequality into (3.2) and applying(wy) - dx = (—g)7 (wy,) - di,, we get
for all k € K sufficiently large,

0< (—g) (wg) di < p U (L+08) oy | dy || %

Taking the limit on both sides of the equation, then by conmg| d. |< M and recalling
limkeKk_mo ay, = 0, we obtain théimkeK’k%oo ’ (—g)f (wk) - dp ’: 0.
This also yields a contradiction. O

Remark 1. To say the existence bfwhich satisfies (3.2), we should verify that + p~ o d

is feasible. Sincel, -1 = 0, (wp + ptagdy) -1 = wi -1 = % So, we should check
wy + pLagd, > 0. Sincelime i k00 . = 0, oy iS near to zero for sufficiently large.
Thus,w;, + p~'aydy, > 0 except very special cases.

4. NUMERICAL RESULTS

In this section, we test our proposed CG algorithm on two tiegsexamples of non-
negligible size. Through the tests, we check if their nunarresults match the analyses
presented in section 3.

Our algorithm is supposed to generate a sequénge on which the soft margin monoton-
ically decreases, which is the first check point. Accordim@teorem (2), the stopping criteria
(—gr)’ - di, < € should be satisfied after a finite number of iterations for gimgn threshold
e > 0, which is the second check point. According to Theoremf(ig,dolutionw; with the
stopping criteria satisfied is the KKT point, which is therthbne. The KKT point is the global
minimizer of the soft margin, the optimal strong classifignjch is the final one.

4.1. Low dimensional example. We solve a boosting problem that minimizes(lselw) with
w>0andw- 1= % whereA is a4 x 3 matrix given below.

-1 1 1
-1 1 1
A= -1 1 -1

1 -1 -1
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FIGURE 2. the convergence of the CG method for example 4.1

As shown in Figure 2, the soft margin [seAw) monotonically decreases and the stopping
criteria(—gy.)/ - d, drops to a very small number in finite iterations, which isieajent to the

statement of Theorem Bm infj,_, o (—gi)’ -dx = 0.

4.2. Classifying win/loss of sports gamesOne of the primal applications of boosting is to

classify win/loss of sports games [6]. As an example, we tkerast amount of statistics from

the basketball league of a certain country*(for a patentasse do not disclose the details).
The statistics of each game is represented by the followéigudnbers.
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TABLE 1. Statistics form the basketball league

Home(+1) Field Goals Made Field Goals Attempted | Field Goals Percentage 3 Point Goals
3 Point Goals Attempted 3 Point Goals Percentage Free Throws Made | Free Throws Attempted
Free Throws Percentage Offensive Rebounds Defensive Rebounds Total Rebounds
Assists Personal Fouls Steals Turnovers
Road(—1) Field Goals Made Field Goals Attempted | Field Goals Percentage 3 Point Goals
3 Point Goals Attempted 3 Point Goals Percentage Free Throws Made | Free Throws Attempted
Free Throws Percentage Offensive Rebounds Defensive Rebounds Total Rebounds
Assists Personal Fouls Steals Turnovers

In a whole year, there were 538 number of games with the vasffesults, from which we
take a training datdxy, - - - , za7—269} With the win/loss of the home teafy:, -+ ,ym} C
{+£1}. Eachz; represents the statistics of a game, ang R269%36,

Similarly to the previous example, Figure 3 shows that tHe margin monotonically de-
creases and the stopping criteria drops to a very small nuimifi@ite iterations, matching the
analyses in Section 3.

5. CONCLUSION

We proposed a new Conjugate Gradient method for solvingecoprogrammings with the
non-negative constraints and a linear constraint, andessbdly applied the method to the
boosting problems. We also presented a convergence anédyghe method. Our analysis
shows that the method is convergent in a finite iteration fyrsmall stopping threshold. The
solution with the stopping criteria satisfied is shown to lve KKT point of the convex pro-
gramming and hence the global minimizer of the programmig solved two benchmark
boosting problems by the CG method, and obtained numersallts that completely cope
with the analysis. Our algorithm with the guaranteed cay@ece can be successful in other
boosting problems as well as other convex programmings.
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