• 제목/요약/키워드: Graded primary ideals

검색결과 5건 처리시간 0.02초

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • 제57권4호
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

ON GRADED 2-ABSORBING PRIMARY AND GRADED WEAKLY 2-ABSORBING PRIMARY IDEALS

  • Al-Zoubi, Khaldoun;Sharafat, Nisreen
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.675-684
    • /
    • 2017
  • Let G be a group with identity e and let R be a G-graded ring. In this paper, we introduce and study graded 2-absorbing primary and graded weakly 2-absorbing primary ideals of a graded ring which are different from 2-absorbing primary and weakly 2-absorbing primary ideals. We give some properties and characterizations of these ideals and their homogeneous components.

GRADED PRIMAL SUBMODULES OF GRADED MODULES

  • Darani, Ahmad Yousefian
    • 대한수학회지
    • /
    • 제48권5호
    • /
    • pp.927-938
    • /
    • 2011
  • Let G be an abelian monoid with identity e. Let R be a G-graded commutative ring, and M a graded R-module. In this paper we first introduce the concept of graded primal submodules of M an give some basic results concerning this class of submodules. Then we characterize the graded primal ideals of the idealization R(+)M.

m-PRIMARY m-FULL IDEALS

  • Woo, Tae Whan
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.799-809
    • /
    • 2013
  • An ideal I of a local ring (R, m, k) is said to be m-full if there exists an element $x{\in}m$ such that Im : x = I. An ideal I of a local ring R is said to have the Rees property if ${\mu}$(I) > ${\mu}$(J) for any ideal J containing I. We study properties of m-full ideals and we characterize m-primary m-full ideals in terms of the minimal number of generators of the ideals. In particular, for a m-primary ideal I of a 2-dimensional regular local ring (R, m, k), we will show that the following conditions are equivalent. 1. I is m-full 2. I has the Rees property 3. ${\mu}$(I)=o(I)+1 In this paper, let (R, m, k) be a commutative Noetherian local ring with infinite residue field k = R/m.

ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS

  • Mafi, Amir;Naderi, Dler
    • 대한수학회보
    • /
    • 제57권2호
    • /
    • pp.407-417
    • /
    • 2020
  • Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, , xd) is a general minimal reduction of I and Ji = (x1, , xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.