• 제목/요약/키워드: Grad

Search Result 425, Processing Time 0.025 seconds

Visual Explanation of a Deep Learning Solar Flare Forecast Model and Its Relationship to Physical Parameters

  • Yi, Kangwoo;Moon, Yong-Jae;Lim, Daye;Park, Eunsu;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2021
  • In this study, we present a visual explanation of a deep learning solar flare forecast model and its relationship to physical parameters of solar active regions (ARs). For this, we use full-disk magnetograms at 00:00 UT from the Solar and Heliospheric Observatory/Michelson Doppler Imager and the Solar Dynamics Observatory/Helioseismic and Magnetic Imager, physical parameters from the Space-weather HMI Active Region Patch (SHARP), and Geostationary Operational Environmental Satellite X-ray flare data. Our deep learning flare forecast model based on the Convolutional Neural Network (CNN) predicts "Yes" or "No" for the daily occurrence of C-, M-, and X-class flares. We interpret the model using two CNN attribution methods (guided backpropagation and Gradient-weighted Class Activation Mapping [Grad-CAM]) that provide quantitative information on explaining the model. We find that our deep learning flare forecasting model is intimately related to AR physical properties that have also been distinguished in previous studies as holding significant predictive ability. Major results of this study are as follows. First, we successfully apply our deep learning models to the forecast of daily solar flare occurrence with TSS = 0.65, without any preprocessing to extract features from data. Second, using the attribution methods, we find that the polarity inversion line is an important feature for the deep learning flare forecasting model. Third, the ARs with high Grad-CAM values produce more flares than those with low Grad-CAM values. Fourth, nine SHARP parameters such as total unsigned vertical current, total unsigned current helicity, total unsigned flux, and total photospheric magnetic free energy density are well correlated with Grad-CAM values.

  • PDF

Performance Test of PEMFC with Hollow Fiber Membrane (중공사막 가습에 따른 PEMFC의 성능 평가)

  • Lee, Ho-Yeol;Chon, Kwang-Wu;Park, Chang-Kwon;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.82-91
    • /
    • 2005
  • Polymer membrane needs to maintain appropriate moisture. Insufficient moisture causes low conduction of hydrogen ion because of increased contact resistance between electrode and membrane by shrinking membrane, and abundant moisture decreases fuel cell performance as difficulty of diffusion reacting gas. Therefore, water controlling system is very consequential for the polymer membrane fuel cell. If hollow fiber membrane humidification is used between fuel and air lines, it is possible to supply heat to fuel and air by using thermal exchanger. It can supply appropriate humidity depending on operating temperature, and can recover heat from exhaust gas which contains water vapor and air. Because of simple structure of humidification system, this system can be easily applied in the PEMFC and cut down cost.

A Study on the Generating Efficiency and NOx Emissions of a 30kW Gas Engine Generator with Hydrogen Addition (수소 첨가에 따른 30kW급 가스엔진 발전기의 발전효율 및 질소산화물 배출량 특성 연구)

  • Cha, Hyo-Seok;Kim, Tae-Soo;Eom, Tae-Jun;Chun, Kwang-Min;Song, Soon-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.313-318
    • /
    • 2011
  • This study is about characteristics of generating efficiency and $NO_x$ emissions of a 30 kW gas engine generator in case of using model biogas with hydrogen addition. In this case, both generating efficiency and $NO_x$ emissions are lower than the case of using urban gas (LNG). However, generating efficiency and $NO_x$ emissions are higher than the case of using model biogas only. It means that adding hydrogen which has a high flame propagation velocity has the possibility to improve the generating efficiency, but simultaneously it is also able to increase the $NO_x$ emissions of a gas engine generator.

An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine (HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석)

  • LEE, KEONSIK;KIM, JINGU;BYUN, CHANGHEE;LEE, JONGTAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.

Comparison of Viscosity Measurement of a Liquid Carbon Dioxide Used for a High-Pressure Coal Gasifier (고압 석탄 가스화기용 액상 이산화탄소의 점성측정 방법비교에 관한 연구)

  • KIM, KANGWOOK;KIM, CHANGYEON;KIM, HAKDUCK;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.581-589
    • /
    • 2015
  • In this study, the viscosity of a liquid carbon dioxide ($LCO_2$) that can potentially be used in a wet feed coal gasifier was evaluated. A pressurized capillary viscometer was employed to obtain the viscosity data of $LCO_2$ using two different methods. During the first method, the measurements were conducted under quasi-steady and high pressure flow conditions where two-phase flow was greatly minimized. The viscosity of $LCO_2$ was determined using turbulent friction relationship. At the second flow condition where unsteady flow is induced, the viscosity of $LCO_2$ was measured using the half-time pressure decay data and was further compared with values calculated by the first method.

A Study on the Electrical Conduction and D.C. Breakdown Properties of $(Sr{\cdot}Pb)TiO_3$ Series Ceramic ($(Sr{\cdot}Pb)TiO_3$계 세라믹의 전기전도 및 절연파괴 특성에 관한 연구)

  • Jung, I.H.;Choi, W.S.;Kim, C.H.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.321-324
    • /
    • 1991
  • In this study, $(Sr{\cdot}Pb)TiO_3$ series ceramics which is used in high voltage were fabricated by the mixed oxide method, and the electrical conduction mechanism and D.C. breakdown voltage characteristics of the specimens in accordance with the contents of $Bi_2O_3{\cdot}3TiO_2$ were investigated. As a result, the leakage current was increased with the contents of $Bi_2O_3{\cdot}3TiO_2$ and the measuring temperature. At room temperature, the leakeage current was showed a tendency of saturating when D.C. electrical field of $l5{\sim}30$[kV/cm] was applied to the specimen. As a result of breakdown voltage characteristics. breakdown strength was decreased when the contents of $Bi_2O_3{\cdot}3TiO_2$ were increased. On the other hand, in the temperature region below $60[^{\circ}C]$, the electronic breakdown was occured, and in the temperature region from 60 to $200[^{\circ}C]$, the thermal breakdown was occured by the Joule heat and the dissipation factor.

  • PDF

A Study on the Backfire and Abnormal Combustion in the Free-piston Hydrogen Fueled Engine (프리피스톤 수소기관의 역화 및 이상연소에 관한 연구)

  • Kim, K.M.;Park, S.W.;Lee, J.H.;Noh, K.C.;Lee, J.T.;Lee, Y.K.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The free-piston hydrogen fueled engine is estimated as the next generation power system which can obtain high efficiency and low emission, simultaneously. In order to develop the free-piston hydrogen fueled engine, it is necessary to stable the combustion. The engine combustion, backfire and knock phenomenons were studied by using RICEM for researching combustion characteristics of free-piston engine. As the results, backfire occurrence was not observed in the free-piston engine under limited experimental condition. And knocking occurred in case of higher cylinder wall temperature.

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

A Study on the Ultra Precision Grinding Characteristics of Tungsten Carbide-base $LCU_{CL}$ Core (초정밀 가공기를 이용한 $LSU_{CL}$ 코어 가공에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Lee B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1910-1913
    • /
    • 2005
  • As the various manufacturing technology of optical glass is developed, the aspherical lenses are applied to many fields. However, It is still very difficult to manufacture glass lens because of the high cost and the short life of core. In recent years, the demands of the aspherical glass lenses increase since it is difficult to obtain the desirable performance in the plastic lens. In the glass mold lens, it has merits of high productivity and reproductivity since lens is manufactured by the only forming with high precision mold. The fabricating conditions for glass mold lens are glass surface that does not cause fusion, viscosity of 108-1013 poise for the $0.2{\mu}m$ accuracy, and viscoelasticity for the roughness less than 100 angstrom. In this paper, ultra-precision grinding characteristics of tungsten carbide for forming the aspherical glass lens core were studied and the result of it is applied to manufacture the tungsten carbide-base cores of the glass lens used to the laser scanning unit and the camera phone.

  • PDF

Characteristics of Performance and Back-Fire for External Mixture Hydrogen Fueled Engine without Valve Overlap Period (밸브 오버랩 기간이 없는 흡기관 분사식 수소기관의 성능 및 역화특성)

  • Lee, K.J.;Kang, J.K.;Cong, Huynh Thanh;Noh, K.C.;Lee, J.T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.374-381
    • /
    • 2007
  • In order to verify the feasibility of expansion of back-fire limit equivalence ratio in the hydrogen-fueled engine with external mixture, the characteristics of performance and combustion are experimentally analyzed with change of intake/exhaust valve timings under the fixed valve overlap period of $0^{\circ}$ CA(non-valve overlap period). These characteristics are also tested for the change of exhaust valve closing timing while intake valve opening timing is fixed to clear the main cause of back-fire occurrence. As the results, the less valve overlap period center is retarded, the more back-fire limit equivalence ratio increases and back-fire does not occurred after TDC. In addition, it was shown that the control of back-fire is dependent on intake valve opening timing than valve overlap period.