• Title/Summary/Keyword: Governor modeling

Search Result 24, Processing Time 0.029 seconds

A Study on Suppressed Hunting of Diesel Engine Truck Using Electronic Governor (전자식 가버너를 이용한 디젤 자동차의 헌팅억제 제어에 관한 연구)

  • Hong, S.I.;Kim, N.S.
    • Journal of Power System Engineering
    • /
    • v.2 no.3
    • /
    • pp.68-73
    • /
    • 1998
  • The propulsion diesel engine have been widely applied with a mechanical governor to control the truck speed for a long time. But it was recently very difficult for mechanical governor to control the speed of long stock and diesel engine of truck because of hunting by dead time between fuel injection and power output. This study is aimed to configure the modeling for performance simulation regarding to diesel truck operation which could be suppressed for hunting. The modeling have been made on the base of dynamic characteristic such as electronic governor, injection of fuel system and operating states of diesel engine truck. Real model system have been introduced for deciding reacting parameters and for the comparison of resulting performance in simulation. In results of simulation, we obtained items which diesel truck drives for suppressed hunting.

  • PDF

Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode (50kW 계통연계형 디젤발전기의 모델링 및 실험)

  • Lee, Wujong;Lee, Hak Ju;Chag, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

Modeling and Simulation of Loss of Excitation of Hydro Generator Control System (수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

Modeling and Fault Simulation of Hydro Generator Control System (수력 발전기 제어설비의 모델링과 사고 시뮬레이션)

  • Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.102-107
    • /
    • 2015
  • In this paper, the generator control system by using PSCAD/EMTDC was modeled and several faults simulation were performed. The generator control system is composed of generator, turbine, exciter and governor. The parameters of generator control system model were obtained from field power plant. And then, the various transient phenomena through obtained several signal of developed modeling were analyzed.

Dynamic Characteristic Analysis of Water-Turbine Generator Control System of Sihwa Tidal Power Plant (시화조력발전소 수차발전기 제어시스템의 동적 특성 해석)

  • Ahn, Sang-Ji;Ban, Yu-Hyeon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.180-185
    • /
    • 2012
  • Tidal power is one of new and renewable energy sources. The seawater is stored inside a tidal embankment built at the mouth of a river or bay, where tides ebb and flow. The water turbine-generators produce power by exploiting the gap in the water level between the water outside and inside the embankment. Tidal power plant is a large plant that is installed on the sea. And then, the facility's operations and a separate control system for monitoring and maintenance is required. However, this plant predictive control of building systems and technologies have been avoided the transfer of technology from advanced global companies. Accordingly, the control system for core technology development and localization is urgently needed. This paper presents modeling and simulation using by PSS/E about generator, governor, exciter, and power system stabilizer for control system in Sihwa tidal power plant to improve the efficiency and develope of core technology. And the dynamic characteristics of governor and exciter were analyzed.

A Study on Modeling of Pumped Storage Power Plant (양수발전소의 모델링에 관한 연구)

  • Han, Yoon-Gyo;Lee, Seung-Yoon;Park, Chul-Won
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.77-78
    • /
    • 2015
  • For the smooth operation and efficient management of pumped storage power plants, we should be understand a generator, turbine, exciter, governor, and stabilizer and prepare an abnormal accident through an accident simulation by software such as PSCAD, PSS/E. This paper investigates configuration of the generator system of ${\bigcirc}{\bigcirc}$ pumped storage power plant. And describes the modeling and fault simulation studies using PSCAD.

  • PDF

Characteristic Tests on the Gas Turbine Generator System for Determination and Verification of Model Parameters in a Combined Cycle Power Plant (복합화력발전소 가스터빈 발전기계통 모델정수 도출 및 검증을 위한 특성시험)

  • Kim, Jong Goo;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.4
    • /
    • pp.35-40
    • /
    • 2021
  • In this study, a technical characteristic test was conducted on the gas turbine generator system of Seoincheon Combined cycle no.6 to derive and verify the model constants. As a result of the generator maximum/minimum reactive power limit test, the maximum reactive power limit is 80 MVar and the minimum is -30 MVar. The generator uses the GENROU model, the field time constant (T'do) is 4.077 s, and the inertial constant (H) is 5.461 P.U. Excitation system used ESST4B model to derive and verify model constants by simulating no-load 2% AVR step test, PSS modeling derived from PSS2A model constants, and simulated and compared measurement data measured when PSS off/on Did. The GGOV1 model was used for the governor-turbine, and the numerical stability of the determined governor-turbine model constant was verified by simulating a 10% governor step test through the PSS/E simulation program

Modeling of hydro turbine-governor for simulation (수력 터빈-조속기 시뮬레이션을 위한 모델 구현)

  • 정창기
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.52-55
    • /
    • 1999
  • 디지털 시스템의 발전으로 발전소의 제어시스템도 디지털시스템으로 설비개체가 많이 시행되고 있다. 발전소 제어설비중에서도 아직 연구개발이 미진하고 상대적으로 낙후된 터빈 조속기 제어 분야는 최근 몇 년전부터 연구개발이 진행중이다. 본 논문에서는 수력발전소 수차제어시스템을 개발하기 위한 기본 단계로 수력 터빈-조속기 모델과 기계유압식 조속기의 모델을 검토해 보고 디지털 제어시스템으로 개조하기 위한 디지털 PID 모델을 제시하였다.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • 정병건;양주호;김창화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.27-35
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.

  • PDF

Development of the Robust Speed Controller for Marine Medium Speed Diesel Engines (선박용 중속 디젤 기관의 로바스트 속도제어기 개발)

  • Jung, B.G.;Yang, J.H.;Kim, C.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.4
    • /
    • pp.349-349
    • /
    • 1996
  • The ship's propulsion efficiency depends upon a combibation of engine and propeller. The propeller has better efficiency as the engine has lower rotational speed. This situation led the engine manufacures to design the engine that has lower speed, longer stroke and a small number of cylinders. With this new trends the conventional mechanical-hydrualic governors for engine speed control have been replaced by digital speed controllers which adopted the PID control or the optimal control algorithm. But these control algorithms have not enough robustness to suppress the variations of the delay-time and the parameter perturbation especially in low speed engine. In this study we consider the perturbations of the engine parameters as the modeling uncetainties and design a robust speed controller for marine medium speed diesel engine by means of $ extit{H}_{infty}$control theory having the central solution. By comparing the results of the robust speed controller with those of mechanical governor and PID controller, the validity of the robust speed controller under parameter variations is confirmed. The speed control of the experimental diesel engine of carried out using actuator which is composed of PWM signal generator and D.C servo motor.