• Title/Summary/Keyword: Gorenstein Rings

Search Result 33, Processing Time 0.014 seconds

THE ANNIHILATOR IDEAL GRAPH OF A COMMUTATIVE RING

  • Alibemani, Abolfazl;Bakhtyiari, Moharram;Nikandish, Reza;Nikmehr, Mohammad Javad
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.417-429
    • /
    • 2015
  • Let R be a commutative ring with unity. The annihilator ideal graph of R, denoted by ${\Gamma}_{Ann}(R)$, is a graph whose vertices are all non-trivial ideals of R and two distinct vertices I and J are adjacent if and only if $I{\cap}Ann(J){\neq}\{0\}$ or $J{\cap}Ann(I){\neq}\{0\}$. In this paper, we study some connections between the graph-theoretic properties of this graph and some algebraic properties of rings. We characterize all rings whose annihilator ideal graphs are totally disconnected. Also, we study diameter, girth, clique number and chromatic number of this graph. Moreover, we study some relations between annihilator ideal graph and zero-divisor graph associated with R. Among other results, it is proved that for a Noetherian ring R if ${\Gamma}_{Ann}(R)$ is triangle free, then R is Gorenstein.

FOXBY EQUIVALENCE RELATIVE TO C-WEAK INJECTIVE AND C-WEAK FLAT MODULES

  • Gao, Zenghui;Zhao, Tiwei
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1457-1482
    • /
    • 2017
  • Let S and R be rings and $_SC_R$ a (faithfully) semidualizing bimodule. We introduce and study C-weak flat and C-weak injective modules as a generalization of C-flat and C-injective modules ([21]) respectively, and use them to provide additional information concerning the important Foxby equivalence between the subclasses of the Auslander class ${\mathcal{A}}_C$ (R) and that of the Bass class ${\mathcal{B}}_C$ (S). Then we study the stability of Auslander and Bass classes, which enables us to give some alternative characterizations of the modules in ${\mathcal{A}}_C$ (R) and ${\mathcal{B}}_C$ (S). Finally we consider an open question which is closely relative to the main results ([11]), and discuss the relationship between the Bass class ${\mathcal{B}}_C$(S) and the class of Gorenstein injective modules.

GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Zhiqiang Cheng;Guoqiang Zhao
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.29-40
    • /
    • 2024
  • Let S and R be rings and SCR a semidualizing bimodule. We introduce the notion of GC-FPn-injective modules, which generalizes GC-FP-injective modules and GC-weak injective modules. The homological properties and the stability of GC-FPn-injective modules are investigated. When S is a left n-coherent ring, several nice properties and new Foxby equivalences relative to GC-FPn-injective modules are given.