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GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT

TO A SEMIDUALIZING BIMODULE

Zhiqiang Cheng and Guoqiang Zhao

Abstract. Let S and R be rings and SCR a semidualizing bimodule.

We introduce the notion of GC -FPn-injective modules, which generalizes
GC -FP -injective modules and GC -weak injective modules. The homo-

logical properties and the stability of GC -FPn-injective modules are in-

vestigated. When S is a left n-coherent ring, several nice properties and
new Foxby equivalences relative to GC -FPn-injective modules are given.

1. Introduction

In 1970, Stenström [14] introduced the notion of FP -injective modules. A
leftR-moduleM is said to be FP -injective (or absolutely pure) if Ext1R(F,M) =
0 for any finitely presented left R-module F . It plays an important role in
characterizing coherent rings. Let n ≥ 0 be an integer, in a recent article
[3], Bravo and Pérez studied the relative homological algebra associated to the
notions of n-finitely presented modules and n-coherent rings. In particular,
they introduced the notion of FPn-injective and FPn-flat modules in terms
of n-finitely presented modules and considered cotorsion pairs associated to
these two classes. When n = 1 and ∞, FPn-injective modules are exactly
FP -injective and FP∞-injective (or weak injective) modules (cf. [2, 6, 8]), re-
spectively. Relative to a semidualizing bimodule C, the notions mentioned
above were extended to C-FPn-injective and C-FPn-flat modules in [16], and
it was shown that they possess many nice properties analogous to that of FPn-
injective and FPn-flat modules.

On the other hand, as a nice generalization of injective, projective and flat
modules, Gorenstein injective, Gorenstein projective and Gorenstein flat mod-
ules were introduced over any ring by Enochs and Jenda in [4, 5]. The gen-
eralized versions of these modules with respect to a semidualizing bimodule

SCR were also developed (see [10, 15]), which were named as GC-injective,
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GC-projective and GC-flat modules. Inspired by the ideas of Sather-Wagstaff,
Sharif and White using C-flat C-cotorsion modules to study GC-flat modules
[13], Hu and Zhang introduced in [12] C-FP -injective C-FP -projective mod-
ules and GC-FP -injective modules. When SCR is a faithfully semidualizing
bimodule, it is proven that the GC-FP -injective modules have nice properties
analogous to that of GC-injective modules under the condition that S is a left
coherent ring. Moreover, the category of GC-FP -injective modules was part of
a weak AB-context, in the terminology of Hashimoto. To make the results of
GC-FP -injective modules work for general rings, Gao, Ma and Zhao [7] intro-
duced the concept of GC-weak injective modules. It is proven that many parts
of the homological theory on GC-FP -injective modules can be generalized di-
rectly to the similar theory on GC-weak injective modules over general rings.
The Foxby equivalences relative to GC-weak injective modules were also given.

Motivated by the references mentioned above, we introduce GC-FPn-inject-
ive modules with respect to a semidualizing bimodule SCR by choosing an
appropriate class of modules, which is a bit different from the definition of
GC-FP -injective modules and GC-weak injective modules. Many results of
GC-FP -injective and GC-weak injective modules can be obtained as corollaries
from the results of GC-FPn-injective modules when n = 1 and ∞. When S is a
left n-coherent ring, several nice properties and new Foxby equivalence relative
to GC-FPn-injective modules are given.

The paper is organized as follows. In Section 2, we give some terminologies
and some preliminary results. In Section 3, we first give some characterizations
of the kernel of C-FPn-injective modules, and then prove that, if S is a left
n-coherent ring, the class of GC-FPn-injective left R-modules is closed under
extensions, cokernels of monomorphism and direct summands. The stability of
the category of GC-FPn-injective modules is also investigated. In Section 4,
we mainly discuss the Foxby equivalence of GC-FPn-injective left R-modules
when SCR is a faithfully semidualizing bimodule and S a left n-coherent ring.

2. Notions and definitions

In this section, we recall some definitions and give some notions needed in
the sequel.

2.1. Throughout this paper, R and S are fixed associative rings with unities
and all R- or S-modules are understood to be unital left R- or S-modules. Right
R- or S-modules are identified with left modules over the opposite rings Rop or
Sop. Let Mod R be the category of R-modules. We use the term “subcategory”
to mean a “full and additive subcategory that is closed under isomorphisms”.

2.2. Let X be a subcategory of Mod R. Set

⊥X = {M ∈ ModR |Ext≥1
R (M,X) = 0 for all X ∈ X} and

⊥1X = {M ∈ ModR |Ext1R(M,X) = 0 for all X ∈ X}.
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X⊥ and X⊥1 can be defined dually. For the subcategories X and Y of Mod R,
we write X ⊥ Y if Ext≥1

R (X,Y ) = 0 for each X ∈ X and each Y ∈ Y. X is
said to be closed under extensions if for every exact sequence

0 −→ M ′ −→ M −→ M ′′ −→ 0

with M ′,M ′′∈ X , then M ∈ X .

2.3. Recall from [5] that a cotorsion pair is a pair of classes (A, B) in Mod
R such that A⊥1 = B and ⊥1B = A. A ∩ B is said to be the kernel of the
cotorsion pair (A, B). A cotorsion pair (A, B) is said to be hereditary if A ⊥ B.
A cotorsion pair (A, B) is called complete if, for anyM ∈ModR, there are exact
sequences 0 → B1 → A1 → M → 0 and respectively 0 → M → B2 → A2 → 0,
where A1, A2 ∈ A and B1, B2 ∈ B.
2.4. M is called n-finitely presented (FPn for short) if there exists an exact
sequence

Pn → · · · → P1 → P0 → M → 0

in Mod R with each Pi finitely generated projective. Note that 1-finitely pre-
sented is exactly finitely presented. ∞-finitely presented is just FP∞ in [2] and
super finitely presented in [8].

2.5. An (S,R)-bimodule C = SCR is semidualizing [11] if
(a1) SC is FP∞,
(a2) CR is FP∞,

(b1) the homothety map SSS
Sγ−−→ HomRop(C,C) is an isomorphism,

(b2) the homothety map RRR
γR−−→ HomS(C,C) is an isomorphism,

(c1) Ext≥1
S (C,C) = 0,

(c2) Ext≥1
Rop(C,C) = 0.

A semidualizing bimodule SCR is faithfully semidualizing if it satisfies the
following conditions for all modules SN and MR:

(1) If HomS(C,N) = 0, then N = 0.
(2) If HomRop(C,M) = 0, then M = 0.
In what follows, we always assume that C is a semidualizing (S,R)-bimodule.

2.6. The Auslander class AC(R) [11] with respect to C consists of all modules
M in ModR satisfying:

(A1) TorR≥1(C,M) = 0.

(A2) Ext≥1
S (C,C ⊗R M) = 0.

(A3) The natural evaluation homomorphism µM : M −→ HomS(C,C ⊗R

M) = 0 is an isomorphism of R-modules.
The Bass class BC(S) [11] with respect to C consists of all modules N ∈

ModS satisfying:
(B1) Ext≥1

S (C,N) = 0.

(B2) TorR≥1(C,HomS(C,N)) = 0.
(B3) The natural evaluation homomorphism νN : C ⊗R HomS(C,N) −→ N

is an isomorphism of S-modules.
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2.7. An R-module M is called FPn-injective [3] in case Ext1R(P,M) = 0 for
every n-finitely presented R-module P . In what follows, we denote by FIn(R)
the class of FPn-injective left R-modules.

Inspired by the definition of the kernel of a cotorsion pair, we call H(X ) :=
⊥X ∩ X the kernel of X , and we set

FIn
C(R) = {HomS(C,E) |E ∈ FIn(S)},

HC(FIn(R)) = {HomS(C,E) |E ∈ H(FIn(S))}.
Modules in FIn

C(R) are called C-FPn-injective.

3. GC-FPn-injective modules

In this section, we introduce and study GC-FPn-injective modules. It will
be shown that the results of GC-FPn-injective modules cover relevant results
with GC-FP -injective modules [12] and GC-weak injective modules [7].

Lemma 3.1 ([16, Proposition 3.3 and Lemma 3.5]). The Auslander class
AC(R) contains all C-FPn-injective left R-modules, and the Bass class BC(S)
contains all FPn-injective left S-modules.

Lemma 3.2 ([11, Theorem 6.4(a),(b)]). Let M and M ′ be R-modules, let N
and N ′ be S-modules, and let i ≥ 0.

(a) If M ∈ AC(R) and TorR≥1(C,M
′) = 0 (e.g., if M ′ ∈ AC(R)), then

ExtiR(M
′,M) ∼= ExtiS(C ⊗R M ′, C ⊗R M).

(b) If N ∈ BC(S) and Ext≥1
S (C,N ′) = 0 (e.g., if N ′ ∈ BC(S)), then

ExtiS(N,N ′) ∼= ExtiR(HomS(C,N),HomS(C,N
′)).

Lemma 3.3. M ∈ ⊥FIn
C(R) if and only if C⊗RM ∈ ⊥FIn(S) and TorR≥1(C,

M) = 0.

Proof. (⇒) Let M ∈ ⊥FIn
C(R) and I be a faithfully injective left S-module.

Then Ext≥1
R (M,HomS(C, I)) = 0 by definition. Since

HomS(Tor
R
i (C,M), I) ∼= ExtiR(M,HomS(C, I))

for each i ≥ 1 from [5, Theorem 3.2.1], thus TorR≥1(C, M) = 0. Suppose
N ∈ FIn(S), then N ∈ BC(S) by Lemma 3.1. So

ExtiS(C⊗RM,N)∼=ExtiS(C⊗RM,C⊗RHomS(C,N))∼=ExtiR(M,HomS(C,N))

for each i ≥ 1 by Lemma 3.2(a). Note that HomS(C,N) ∈ FIn
C(R), thus

Ext≥1
R (M,HomS(C,N)) = 0, and hence Ext≥1

S (C ⊗R M,N) = 0, which means
that C ⊗R M ∈ ⊥FIn(S).

(⇐) Let L ∈ FIn
C(R), then there exists E ∈ FIn(S) such that L =

HomS(C,E). Since L ∈ AC(R) by Lemma 3.1, and C ⊗R L ∼= E ∈ FIn(S), it
follows from Lemma 3.2(a) that ExtiR(M,L) ∼= ExtiS(C⊗R M,C⊗R L) = 0 for
each i ≥ 1. So M ∈ ⊥FIn

C(R). □
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Proposition 3.4. The following are equivalent for M ∈ ModR:

(1) M ∈ H(FIn
C(R)).

(2) M ∈ HC(FIn(R)).
(3) C ⊗R M ∈ H(FIn(S)).

In particular, HC(FIn(R)) ⊥ FIn
C(R).

Proof. (1) ⇒ (2) Because M ∈ FIn
C(R), M = HomS(C,W ) with W ∈

FIn(S). It is sufficient to show that W is in ⊥FIn(S). Let N ∈ FIn(S),
hence W,N ∈ BC(S) by Lemma 3.1. It follows from Lemma 3.2(b) that
ExtiS(W,N) ∼= ExtiR(Hom(C,W ),Hom(C,N)) = ExtiR(M,HomS(C,N)) for

each i ≥ 1. Since M ∈ ⊥FIn
C(R), Ext≥1

R (M,HomS(C,N)) = 0, which implies

Ext≥1
S (W,N) = 0. We obtain the assertion.
(2) ⇒ (3) Let M ∈ HC(FIn(R)). Then M = HomS(C,W ) with W ∈

H(FIn(S)). By Lemma 3.1, W ∈ FIn(S) ⊆ BC(S), and hence W ∼= C ⊗R

HomS(C,W ). So C ⊗R M ∼= W ∈ H(FIn(S)).
(3) ⇒ (1) Assume C ⊗R M ∈ H(FIn(S)) ⊆ FIn(S). Then C ⊗R M ∈

BC(S). It follows from [16, Lemma 3.9] thatM ∈AC(R), and thus TorR≥1(C,M)

= 0. Since C ⊗R M ∈ ⊥FIn(S), one gets M ∈ ⊥FIn
C(R) by Lemma 3.3.

Moreover, since M ∼= HomS(C,C ⊗R M), then M ∈ FIn
C(R). Therefore,

M ∈ H(FIn
C(R)). □

We denote the class of injective R-modules by I(R) in the following.

Definition 3.5. Let C be a semidualizing bimodule. A complete FIn
CI-resolu-

tion is a complex Y of R-modules

Y = · · · ∂2−→ W1
∂1−→ W0

∂0−→ I0
∂0

−→ I1
∂1

−→ · · ·

satisfying the following:
(1) Y is exact and HomR(HC(FIn(R)),−)-exact, and
(2) Wi≥0 ∈ FIn

C(R) and Ii≥0 ∈ I(R).

An R-moduleM is called GC-FPn-injective if there exists a complete FIn
CI-

resolution Y such that M ∼= ker(∂0). We denote by GCFIn(R) the class of
GC-FPn-injective R-modules.

Remark 3.6. (1) An R-module M is GC-FPn-injective if and only if M ∈
HC(FIn(R))⊥ and there is a HomR(HC(FIn(R)),−)-exact exact sequence
· · · → W1 → W0 → M → 0 with each Wi ∈ FIn

C(R).
(2) Every C-FPn-injective module and every ker ∂i are GC-FPn-injective by

Proposition 3.4 and (1).

Proposition 3.7. Given an R-module exact sequence 0 → A → B → D → 0.
We have

(1) If A ∈ GCFIn(R) and B ∈ FIn
C(R), then D ∈ GCFIn(R).

(2) If A ∈ FIn
C(R) and D ∈ GCFIn(R), then B ∈ GCFIn(R).
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Proof. (1) Since A ∈ GCFIn(R), there is a HomR(HC(FIn(R)),−)-exact ex-
act sequence · · · → W1 → W0 → A → 0, where each Wi ∈ FIn

C(R). By
gluing this sequence with the given one, we get a HomR(HC(FIn(R)),−)-
exact exact sequence · · · → W1 → W0 → B → D → 0. Since B ∈ FIn

C(R) ⊆
HC(FIn(R))⊥ by Proposition 3.4, so is D from the given short exact sequence.
Thus we have D ∈ GCFIn(R).

(2) Let D ∈ GCFIn(R), by Remark 3.6(2), there is an exact sequence 0 →
D′ → W → D → 0 with W ∈ FIn

C(R) and D′ ∈ GCFIn(R). Consider the
following pullback diagram:

0

��

0

��
D′

��

D′

��
0 // A // Q

��

// W //

��

0

0 // A // B

��

// D //

��

0

0 0

Since A,W ∈ FIn
C(R), one has Q ∈ FIn

C(R) by [16, Proposition 3.6]. Thus
B ∈ GCFIn(R) by (1). □

When S is a left n-coherent ring, GC-FPn-injective R-module has more nice
properties.

Lemma 3.8. If S is left n-coherent, then ⊥1FIn(S) = ⊥FIn(S).

Proof. From [3, Theorem 5.5] we know that (⊥1FIn(S),FIn(S)) is a heredi-
tary cotorsion pair. Thus ⊥1FIn(S) ⊥ FIn(S), and so ⊥1FIn(S) ⊆ ⊥FIn(S),
the desired equality follows. □

Theorem 3.9. Let S be a left n-coherent ring. Then the following statements
are equivalent for an R-module M :

(1) M is GC-FPn-injective;
(2) There exists a HomR(HC(FIn(R)),−)-exact exact sequence

Y = · · · → W1 → W0 → I0 → I1 → · · ·
with each Wi ∈ HC(FIn(R)) and each Ii ∈ I(R) such that M ∼=
ker(I0 → I1);

(3) M ∈ HC(FIn(R))⊥ and there exists a HomR(HC(FIn(R)),−)-exact
exact sequence · · · →W1 →W0 →M → 0 with each Wi∈HC(FIn(R)).

Proof. (3) ⇒ (2) ⇒ (1) are trivial.
(1) ⇒ (3) By Remark 3.6(2), there is an exact sequence 0 → M ′ → W →

M → 0, where W ∈ FIn
C(R) and M ′ ∈ GCFIn(R). Then W = HomS(C,E0),
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in which E0 ∈ FIn(S). Note that the cotorsion pair (⊥1FIn(S), FIn(S)) is
complete by [17, Theorem 2.10], hence there exists an exact sequence

α : 0 → E1 → T0 → E0 → 0

such that T0 ∈ ⊥1FIn(S) and E1 ∈ FIn(S). Because FIn(S) is closed under
extensions, T0 is FPn-injective, and hence T0 ∈ H(FIn(S)) by Lemma 3.8.
Since SC is FP∞, Ext1S(C,E1) = 0, which gives rise to an exact sequence

HomS(C,α) : 0 → HomS(C,E1) → HomS(C, T0) → W → 0.

Now consider the following pullback diagram:

0

��

0

��
HomS(C,E1)

��

HomS(C,E1)

��
0 // Q //

��

Hom(C, T0)

��

// M // 0

0 // M ′

��

// W

��

// M // 0

0 0

Since HomS(C,E1) ∈ FIn
C(R) and M ′ ∈ GCFIn(R), then Q ∈ GCFIn(R) by

Proposition 3.7(2). This implies that the middle row in the diagram above is
HomR(HC(FIn(R)),−)-exact. By repeating the above argument to Q, we get
an exact sequence 0 → Q1 → HomS(C, T1) → Q → 0 with T1 ∈ H(FIn(S)).
Continuing the preceding process, one has a HomR(HC(FIn(R)), −)-exact
exact sequence

· · · → HomS(C, T2) → HomS(C, T1) → HomS(C, T0) → M → 0

with each Ti ∈ H(FIn(S)), as desired. □

Let A be an abelian category and X ,Y ⊆ A. Recall from [1, Definition
3.11], an object A ∈ A is called weak (X ,Y)-Gorenstein injective if A ∈ X⊥

and there is an exact sequence · · · → Y1 → Y0 → A → 0 with Yi ∈ Y and
Im(Yi → Yi−1) ∈ X⊥ for all i ≥ 1. Denoted by WGI(X ,Y) the subcategory of
weak (X ,Y)-Gorenstein injective objects.

Definition 3.10. An R-module M is called two-degree GC-FPn-injective if
there exists a complete GCFIn(R)-resolution G of M , which means that G =
· · · → G1 → G0 → G0 → G1 → · · · is an exact complex with each Gi and
Gi are GC-FPn-injective such that M ∼= ker(G0 → G1), and the complex
HomR(Q,G) is exact for every Q ∈ HC(FIn(R)).

We denote by G2
CFIn(R) the class of two-degree GC-FPn-injective R-mod-

ules.
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Theorem 3.11. Let S be a left n-coherent ring. Then

(1) GCFIn(R) is closed under extensions, cokernels of monomorphisms,
summands and direct products.

(2) GCFIn(R) = G2
CFIn(R).

Proof. The closure of direct products follows directly from the definition.
Set X = HC(FIn(R)). Because HC(FIn(R)) ⊆ FIn

C(R), it follows from
Proposition 3.4 that X ⊥ X . Since S is left n-coherent, from Theorem 3.9 and
the dual result of [1, Lemma 3.10], we have GCFIn(R) = WGI(X ,X ). Another
use of Proposition 3.4, one has HC(FIn(R)) = ⊥FIn

C(R)∩FIn
C(R). Note that

FIn
C(R) is closed under extensions by [16, Proposition 3.6], and ⊥FIn

C(R) is
clearly closed under extensions. This implies that X is closed under extensions.
Therefore, the assertion follows from the dual result of [1, Theorem 3.30] and
[9, Proposition 1.4]. □

Corollary 3.12. Let S be a left n-coherent ring and let 0 → A → B →
D → 0 be an exact sequence of R-modules with B,D ∈ GCFIn(R). Then
A ∈ GCFIn(R) if and only if A ∈ HC(FIn(R))⊥1 .

Proof. The “only if” part is clear. For the “if” part, since D ∈ GCFIn(R),
there exists an exact sequence 0 → D′ → W → D → 0 with W ∈ HC(FIn(R))
andD′ ∈ GCFIn(R) by Theorem 3.9. Consider the following pullback diagram:

0

��

0

��
D′

��

D′

��
0 // A // Q

��

// W //

��

0

0 // A // B

��

// D //

��

0

0 0

Since D′, B ∈ GCFIn(R), so is Q from Theorem 3.11(1). On the other hand,
because Ext1R(W,A) = 0, A is a direct summand of Q from the middle row in
the diagram above, and so A ∈ GCFIn(R) by Theorem 3.11(1) again. □

Remark 3.13. Note that 1-coherent ring is coherent and any ring is∞-coherent.
When S is a left n-coherent ring, the results about GC-FPn-injective modules
extend the corresponding results of GC-FP -injective modules [12] and GC-
weak-injective modules [7] by Lemma 3.8.

4. Foxby equivalence of GC-FPn-injective modules

In this section, we investigate Foxby equivalences relative to C-FPn-injective
and GC-FPn-injective modules.
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Proposition 4.1. Let C be a semidualizing bimodule. Then there are equiva-
lences of categories:

HC(FIn(R))
C⊗R−

∼
//

� _

��

H(FIn
(S))

HomS(C,−)
oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo

Proof. The proof is straightforward by Lemma 3.1, Proposition 3.4 and [11,
Proposition 4.1]. □

Lemma 4.2. Let C be a faithfully semidualizing bimodule and M ∈ AC(R).
Then the following are equivalent for any Y ∈ BC(S).

(1) the sequence X = · · · → X1 → X0 → M → 0 in AC(R) is HomR(HomS

(C, Y ),−)-exact exact.
(2) the sequence C ⊗R X = · · · → C ⊗R X1 → C ⊗R X0 → C ⊗R M → 0

in BC(S) is HomS(Y,−)-exact exact.

Proof. Firstly, for any Y ∈ BC(S), by Lemma 3.2(b), there are isomorphisms
of complex

HomR(HomS(C, Y ),X) ∼= HomR(HomS(C, Y ),HomS(C,C ⊗R X))
∼= HomS(Y,C ⊗R X).

So X is HomR(HomS(C, Y ),−)-exact if and only if C⊗RX is HomS(Y,−)-exact.
Since M and every Xi are in AC(R), from [11, Theorem 6.2] we know that

each kernel in X is in AC(R). So the exactness of X implies the exactness of
C ⊗R X. Conversely, since C ⊗R M and every C ⊗R Xi are in BC(S), then all
kernels in the sequence C ⊗R X are in BC(S) by [11, Corollary 6.3]. Thus the
exact sequence C ⊗R X is HomS(C,−)-exact. Since HomS(C,C ⊗R X) ∼= X, it
means that X is exact. □

When SCR=RRR, GC-FPn-injective modules are called G-FPn-injective
modules, and denoted by GFIn(S).

Proposition 4.3. Let S be a left n-coherent ring and C faithfully semidual-
izing. If M ∈ AC(R), then M is GC-FPn-injective if and only if C ⊗R M is
G-FPn-injective.

Proof. Let M be GC-FPn-injective. Then there exists a HomR(HC(FIn(R)),
−)-exact exact sequence

(∗) X = · · · → X1 = HomS(C,W1) → X0 = HomS(C,W0) → M → 0

in AC(R) with Wi ∈ H(FIn
(S)) by Theorem 3.9 and Proposition 4.1. This,

from Lemma 4.2, is equivalent to that there is a HomS(H(FIn(S)),−)-exact



38 Z. CHENG AND G. ZHAO

exact sequence

C ⊗R X = · · · → C ⊗R X1 → C ⊗R X0 → C ⊗R M → 0

in BC(S) with C ⊗R Xi
∼= Wi ∈ H(FIn

(S)).
In addition, for any Y ∈ H(FIn

(S)) ⊆ BC(S) and i ≥ 1, Lemma 3.2(b)
yields

ExtiS(Y,C ⊗R M) ∼= ExtiR(HomS(C, Y ),HomS(C,C ⊗R M))

∼= ExtiR(HomS(C, Y ),M).

It follows that C ⊗R M ∈ H(FIn
(S))⊥ if and only if M ∈ HC(FIn

(S))⊥.
Therefore, we obtain the assertion. □

By a similar argument of Lemma 4.2, we get the following result.

Lemma 4.4. Let C be a faithfully semidualizing bimodule and N ∈ BC(S).
Then the following are equivalent for any Y ∈ BC(S):

(1) the sequence Z = · · · → Z1 → Z0 → N → 0 in BC(S) is HomS(Y,−)-
exact exact.

(2) the sequence HomS(C,Z) = · · · → HomS(C,Z1) → HomS(C,Z0) →
HomS(C,N) → 0 in AC(R) is HomR(HomS(C, Y ),−)-exact exact.

Proposition 4.5. Let S be a left n-coherent ring and C faithfully semidualiz-
ing. If N ∈ BC(S), then N is G-FPn-injective if and only if HomS(C,N) is
GC-FPn-injective.

Proof. Let Y ∈ BC(S). For any i ≥ 1, it follows from Lemma 3.2(b) that

ExtiR(HomS(C, Y ),HomS(C,N)) ∼= ExtiR(Y,N),

which yields that HomS(C,N)∈HC(FIn
(S))⊥ if and only if N ∈H(FIn

(S))⊥.
By Lemma 4.4, the conclusion is obtained by a similar argument in the proof
of Proposition 4.3. □

Theorem 4.6 (Foxby Equivalence). Let S be a left n-coherent ring and SCR

faithfully semidualizing. There are equivalences of categories:

HC(FIn(R))
C⊗R−

∼
//

� _

��

H(FIn(S))
HomS(C,−)

oo � _

��
FIn

C(R)
C⊗R−

∼
//

� _

��

FIn(S)
HomS(C,−)

oo � _

��
GCFIn(R)

⋂
AC(R)

C⊗R−
∼

//
� _

��

GFIn(S)
⋂
BC(S)

HomS(C,−)
oo � _

��
AC(R)

C⊗R−
∼

// BC(S)
HomS(C,−)

oo
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Proof. From Propositions 4.1, [16, Proposition 4.1] and the classical Foxby
equivalence, it only needs to prove the third equivalence in the diagram above.

Let M ∈ GCFIn(R)
⋂
AC(R). It is easy to see that C⊗RM ∈ GFIn(S)

⋂
BC(S) by Proposition 4.3 and [11, Proposition 4.1]. From Proposition 4.5 and
[11, Proposition 4.1], we have that the image of the functor HomS(C,−) under
GFIn(S)

⋂
BC(S) is in GCFIn(R)

⋂
AC(R). Finally, if M ∈ GCFIn(R)

⋂
AC(R) and N ∈ GFIn(S)

⋂
BC(S), then by definition we have two natural

isomorphisms: M ∼= HomS(C,C ⊗R M) and C ⊗R HomS(C,N) ∼= N , which
complete the proof. □
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