• 제목/요약/키워드: Google AI

Search Result 87, Processing Time 0.026 seconds

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

A Study on Success Strategies for Generative AI Services in Mobile Environments: Analyzing User Experience Using LDA Topic Modeling Approach (모바일 환경에서의 생성형 AI 서비스 성공 전략 연구: LDA 토픽모델링을 활용한 사용자 경험 분석)

  • Soyon Kim;Ji Yeon Cho;Sang-Yeol Park;Bong Gyou Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.109-119
    • /
    • 2024
  • This study aims to contribute to the initial research on on-device AI in an environment where generative AI-based services on mobile and other on-device platforms are increasing. To derive success strategies for generative AI-based chatbot services in a mobile environment, over 200,000 actual user experience review data collected from the Google Play Store were analyzed using the LDA topic modeling technique. Interpreting the derived topics based on the Information System Success Model (ISSM), the topics such as tutoring, limitation of response, and hallucination and outdated informaiton were linked to information quality; multimodal service, quality of response, and issues of device interoperability were linked to system quality; inter-device compatibility, utility of the service, quality of premium services, and challenges in account were linked to service quality; and finally, creative collaboration was linked to net benefits. Humanization of generative AI emerged as a new experience factor not explained by the existing model. By explaining specific positive and negative experience dimensions from the user's perspective based on theory, this study suggests directions for future related research and provides strategic insights for companies to improve and supplement their services for successful business operations.

Functionality-based Processing-In-Memory Accelerator for Deep Neural Networks (딥뉴럴네트워크를 위한 기능성 기반의 핌 가속기)

  • Kim, Min-Jae;Kim, Shin-Dug
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.8-11
    • /
    • 2020
  • 4 차 산업혁명 시대의 도래와 함께 AI, ICT 기술의 융합이 진행됨에 따라, 유저 레벨의 디바이스에서도 AI 서비스의 요청이 실현되었다. 이미지 처리와 관련된 AI 서비스는 피사체 판별, 불량품 검사, 자율주행 등에 이용되고 있으며, 특히 Deep Convolutional Neural Network (DCNN)은 이미지의 특색을 파악하는 데 뛰어난 성능을 보여준다. 하지만, 이미지의 크기가 커지고, 신경망이 깊어짐에 따라 연산 처리에 있어 낮은 데이터 지역성과 빈번한 메모리 참조를 야기했다. 이에 따라, 기존의 계층적 시스템 구조는 DCNN 을 scalable 하고 빠르게 처리하는 데 한계를 보인다. 본 연구에서는 DCNN 의 scalable 하고 빠른 처리를 위해 3 차원 메모리 구조의 Processing-In-Memory (PIM) 가속기를 제안한다. 이를 위해 기존 3 차원 메모리인 Hybrid Memory Cube (HMC)에 하드웨어 및 소프트웨어 모듈을 추가로 구성하였다. 구체적으로, Processing Element (PE)간 데이터를 공유할 수 있는 공유 캐시 및 소프트웨어 스택, 파이프라인화된 곱셈기 및 듀얼 프리페치 버퍼를 구성하였다. 이를 유명 DCNN 알고리즘 LeNet, AlexNet, ZFNet, VGGNet, GoogleNet, RestNet 에 대해 성능 평가를 진행한 결과 기존 HMC 대비 40.3%의 속도 향상을 29.4%의 대역폭 향상을 보였다.

Evaluation on the Usability of Chatbot Intelligent Messenger Mobile Services -Focusing on Google(Allo) and Facebook(M messenger) (메신저 기반의 모바일 챗봇 서비스 사용자 경험 평가 -구글(Allo)과 페이스북(M messenger)을 중심으로-)

  • Kang, Hee Ju;Kim, Seung In
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.271-276
    • /
    • 2017
  • This project has been conducted to improve the usability of Chatbot Services such as Google(Allo) and Facebook M(Messenger. Based on the evaluation, this study aims to suggest the solutions to improve the usability of domestic Chatbot services and future directions for their development. It provides the overall understanding of the AI Chatbot service and the feature of Chatbot service through literature search. Furthermore, we summarized the current standing and the prospect of domestic messenger-based assistant Chatbot services. For conducting user evaluation, Peter Morville's honeycomb model is applied to in-depth user interviews. The followings are elements that could be amended to improve the service. The service should be incorporated by intuitive elements for users' understanding its functions and eliminate any elements that interfere with usability. The accuracy should be increased to improve the user satisfaction. This research will provide the future guidelines to improve the usability of Chabot services through continuous evaluation by users.

A Preliminary Discussion on Policy Decision Making of AI in The Fourth Industrial Revolution (4차 산업혁명시대 인공지능 정책의사결정에 대한 탐색적 논의)

  • Seo, Hyung-Jun
    • Informatization Policy
    • /
    • v.26 no.3
    • /
    • pp.3-35
    • /
    • 2019
  • In the fourth industrial revolution age, because of advance in the intelligence information technologies, the various roles of AI have attracted public attention. Starting with Google's Alphago, AI is now no longer a fantasized technology but a real one that can bring ripple effect in entire society. Already, AI has performed well in the medical service, legal service, and the private sector's business decision making. This study conducted an exploratory analysis on the possibilities and issues of AI-driven policy decision making in the public sector. The three research purposes are i) could AI make a policy decision in public sector?; ii) how different is AI-driven policy decision making compared to the existing methods of decision making?; and iii) what issues would be revealed by AI's policy decision making? AI-driven policy decision making is differentiated from the traditional ways of decision making in that the former is represented by rationality based on sufficient amount of information and alternatives, increased transparency and trust, more objective views for policy issues, and faster decision making process. However, there are several controversial issues regarding superiority of AI, ethics, accountability, changes in democracy, substitution of human labor in the public sector, and data usage problems for AI. Since the adoption of AI for policy decision making will be soon realized, it is necessary to take an integrative approach, considering both the positive and adverse effects, to minimize social impact.

Topophilia Convergence Science Education for Enhancing Learning Capabilities in the Age of Artificial Intelligence Based on the Case of Challenge Match Lee Sedol and AlphaGo (알파고와 이세돌의 챌린지 매치에서 분석된 인공지능 시대의 학습자 역량을 위한 토포필리아 융합과학 교육)

  • Yoon, Ma-Byong;Lee, Jong-Hak;Baek, Je-Eun
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.4
    • /
    • pp.123-131
    • /
    • 2016
  • In this paper, we discussed learner's capability enhancement education suitable for the age of artificial intelligence (AI) using game analysis and archival research based on the 2016 Google Deepmind Challenge match between AI that possessed the finest deep neural networks and the master Baduk player that represented the best of the human minds. AlphaGo was a brilliant move that transcended the conventional wisdom of Baduk and introduced a new paradigm of Baduk. Lee Sedol defeated AlphaGo via the 'divine move and Great idea' that even AlphaGo could not have calculated. This was the triumph of human intuition and insights, which are deeply embedded in human nature as well as human courage and strength. Convergence science education that cultivates student abilities that can help them control machines in the age of AI must be in the direction of developing diverse human insights and positive spirits embedded in human nature not possessed by AI via implementing hearts-on experience and topophilia education obtained from the nature.

Artificial Intelligence and College Mathematics Education (인공지능(Artificial Intelligence)과 대학수학교육)

  • Lee, Sang-Gu;Lee, Jae Hwa;Ham, Yoonmee
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • Today's healthcare, intelligent robots, smart home systems, and car sharing are already innovating with cutting-edge information and communication technologies such as Artificial Intelligence (AI), the Internet of Things, the Internet of Intelligent Things, and Big data. It is deeply affecting our lives. In the factory, robots have been working for humans more than several decades (FA, OA), AI doctors are also working in hospitals (Dr. Watson), AI speakers (Giga Genie) and AI assistants (Siri, Bixby, Google Assistant) are working to improve Natural Language Process. Now, in order to understand AI, knowledge of mathematics becomes essential, not a choice. Thus, mathematicians have been given a role in explaining such mathematics that make these things possible behind AI. Therefore, the authors wrote a textbook 'Basic Mathematics for Artificial Intelligence' by arranging the mathematics concepts and tools needed to understand AI and machine learning in one or two semesters, and organized lectures for undergraduate and graduate students of various majors to explore careers in artificial intelligence. In this paper, we share our experience of conducting this class with the full contents in http://matrix.skku.ac.kr/math4ai/.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.

Artificial intelligence wearable platform that supports the life cycle of the visually impaired (시각장애인의 라이프 사이클을 지원하는 인공지능 웨어러블 플랫폼)

  • Park, Siwoong;Kim, Jeung Eun;Kang, Hyun Seo;Park, Hyoung Jun
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.20-28
    • /
    • 2020
  • In this paper, a voice, object, and optical character recognition platform including voice recognition-based smart wearable devices, smart devices, and web AI servers was proposed as an appropriate technology to help the visually impaired to live independently by learning the life cycle of the visually impaired in advance. The wearable device for the visually impaired was designed and manufactured with a reverse neckband structure to increase the convenience of wearing and the efficiency of object recognition. And the high-sensitivity small microphone and speaker attached to the wearable device was configured to support the voice recognition interface function consisting of the app of the smart device linked to the wearable device. From experimental results, the voice, object, and optical character recognition service used open source and Google APIs in the web AI server, and it was confirmed that the accuracy of voice, object and optical character recognition of the service platform achieved an average of 90% or more.

  • PDF

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.