• Title/Summary/Keyword: GoogLeNet

Search Result 41, Processing Time 0.028 seconds

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

SHM data anomaly classification using machine learning strategies: A comparative study

  • Chou, Jau-Yu;Fu, Yuguang;Huang, Shieh-Kung;Chang, Chia-Ming
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.77-91
    • /
    • 2022
  • Various monitoring systems have been implemented in civil infrastructure to ensure structural safety and integrity. In long-term monitoring, these systems generate a large amount of data, where anomalies are not unusual and can pose unique challenges for structural health monitoring applications, such as system identification and damage detection. Therefore, developing efficient techniques is quite essential to recognize the anomalies in monitoring data. In this study, several machine learning techniques are explored and implemented to detect and classify various types of data anomalies. A field dataset, which consists of one month long acceleration data obtained from a long-span cable-stayed bridge in China, is employed to examine the machine learning techniques for automated data anomaly detection. These techniques include the statistic-based pattern recognition network, spectrogram-based convolutional neural network, image-based time history convolutional neural network, image-based time-frequency hybrid convolution neural network (GoogLeNet), and proposed ensemble neural network model. The ensemble model deliberately combines different machine learning models to enhance anomaly classification performance. The results show that all these techniques can successfully detect and classify six types of data anomalies (i.e., missing, minor, outlier, square, trend, drift). Moreover, both image-based time history convolutional neural network and GoogLeNet are further investigated for the capability of autonomous online anomaly classification and found to effectively classify anomalies with decent performance. As seen in comparison with accuracy, the proposed ensemble neural network model outperforms the other three machine learning techniques. This study also evaluates the proposed ensemble neural network model to a blind test dataset. As found in the results, this ensemble model is effective for data anomaly detection and applicable for the signal characteristics changing over time.

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

A Comparative Study of Alzheimer's Disease Classification using Multiple Transfer Learning Models

  • Prakash, Deekshitha;Madusanka, Nuwan;Bhattacharjee, Subrata;Park, Hyeon-Gyun;Kim, Cho-Hee;Choi, Heung-Kook
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.209-216
    • /
    • 2019
  • Over the past decade, researchers were able to solve complex medical problems as well as acquire deeper understanding of entire issue due to the availability of machine learning techniques, particularly predictive algorithms and automatic recognition of patterns in medical imaging. In this study, a technique called transfer learning has been utilized to classify Magnetic Resonance (MR) images by a pre-trained Convolutional Neural Network (CNN). Rather than training an entire model from scratch, transfer learning approach uses the CNN model by fine-tuning them, to classify MR images into Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC). The performance of this method has been evaluated over Alzheimer's Disease Neuroimaging (ADNI) dataset by changing the learning rate of the model. Moreover, in this study, in order to demonstrate the transfer learning approach we utilize different pre-trained deep learning models such as GoogLeNet, VGG-16, AlexNet and ResNet-18, and compare their efficiency to classify AD. The overall classification accuracy resulted by GoogLeNet for training and testing was 99.84% and 98.25% respectively, which was exceptionally more than other models training and testing accuracies.

Plant Disease Identification using Deep Neural Networks

  • Mukherjee, Subham;Kumar, Pradeep;Saini, Rajkumar;Roy, Partha Pratim;Dogra, Debi Prosad;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.4
    • /
    • pp.233-238
    • /
    • 2017
  • Automatic identification of disease in plants from their leaves is one of the most challenging task to researchers. Diseases among plants degrade their performance and results into a huge reduction of agricultural products. Therefore, early and accurate diagnosis of such disease is of the utmost importance. The advancement in deep Convolutional Neural Network (CNN) has change the way of processing images as compared to traditional image processing techniques. Deep learning architectures are composed of multiple processing layers that learn the representations of data with multiple levels of abstraction. Therefore, proved highly effective in comparison to many state-of-the-art works. In this paper, we present a plant disease identification methodology from their leaves using deep CNNs. For this, we have adopted GoogLeNet that is considered a powerful architecture of deep learning to identify the disease types. Transfer learning has been used to fine tune the pre-trained model. An accuracy of 85.04% has been recorded in the identification of four disease class in Apple plant leaves. Finally, a comparison with other models has been performed to show the effectiveness of the approach.

Accuracy Analysis and Comparison in Limited CNN using RGB-csb (RGB-csb를 활용한 제한된 CNN에서의 정확도 분석 및 비교)

  • Kong, Jun-Bea;Jang, Min-Seok;Nam, Kwang-Woo;Lee, Yon-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2020
  • This paper introduces a method for improving accuracy using the first convolution layer, which is not used in most modified CNN(: Convolution Neural Networks). In CNN, such as GoogLeNet and DenseNet, the first convolution layer uses only the traditional methods(3×3 convolutional computation, batch normalization, and activation functions), replacing this with RGB-csb. In addition to the results of preceding studies that can improve accuracy by applying RGB values to feature maps, the accuracy is compared with existing CNN using a limited number of images. The method proposed in this paper shows that the smaller the number of images, the greater the learning accuracy deviation, the more unstable, but the higher the accuracy on average compared to the existing CNN. As the number of images increases, the difference in accuracy between the existing CNN and the proposed method decreases, and the proposed method does not seem to have a significant effect.

A Comparative Study of the CNN Model for AD Diagnosis

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.52-58
    • /
    • 2023
  • Alzheimer's disease is one type of dementia, the symptoms can be treated by detecting the disease at its early stages. Recently, many computer-aided diagnosis using magnetic resonance image(MRI) have shown a good results in the classification of AD. Taken these MRI images and feed to Free surfer software to extra the features. In consideration, using T1-weighted images and classifying using the convolution neural network (CNN) model are proposed. In this paper, taking the subjects from ADNI of subcortical and cortical features of 190 subjects. Consider the study to reduce the complexity of the model by using the single layer in the Res-Net, VGG, and Alex Net. Multi-class classification is used to classify four different stages, CN, EMCI, LMCI, AD. The following experiment shows for respective classification Res-Net, VGG, and Alex Net with the best accuracy with VGG at 96%, Res-Net, GoogLeNet and Alex Net at 91%, 93% and 89% respectively.

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.

Grading of Harvested 'Mihwang' Peach Maturity with Convolutional Neural Network (합성곱 신경망을 이용한 '미황' 복숭아 과실의 성숙도 분류)

  • Shin, Mi Hee;Jang, Kyeong Eun;Lee, Seul Ki;Cho, Jung Gun;Song, Sang Jun;Kim, Jin Gook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.270-278
    • /
    • 2022
  • This study was conducted using deep learning technology to classify for 'Mihwang' peach maturity with RGB images and fruit quality attributes during fruit development and maturation periods. The 730 images of peach were used in the training data set and validation data set at a ratio of 8:2. The remains of 170 images were used to test the deep learning models. In this study, among the fruit quality attributes, firmness, Hue value, and a* value were adapted to the index with maturity classification, such as immature, mature, and over mature fruit. This study used the CNN (Convolutional Neural Networks) models for image classification; VGG16 and InceptionV3 of GoogLeNet. The performance results show 87.1% and 83.6% with Hue left value in VGG16 and InceptionV3, respectively. In contrast, the performance results show 72.2% and 76.9% with firmness in VGG16 and InceptionV3, respectively. The loss rate shows 54.3% and 62.1% with firmness in VGG16 and InceptionV3, respectively. It considers increasing for adapting a field utilization with firmness index in peach.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.