• Title/Summary/Keyword: Gold sulfite

Search Result 4, Processing Time 0.016 seconds

Effect of addition of Tl+ and Pd2+ on the texture and hardness of the non-cyanide gold plating layer (논시안 금도금층의 조직과 경도에 미치는 Tl+ 과 Pd2+ 이온첨가의 영향)

  • Heo, Wonyoung;Son, Injoon
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.460-468
    • /
    • 2022
  • Due to its high electrical conductivity, low contact resistance, good weldability and high corrosion resi-stance, gold is widely used in electronic components such as connectors and printed circuit boards (PCB). Gold ion salts currently used in gold plating are largely cyan-based salts and non-cyanic salts. The cya-nide bath can be used for both high and low hardness, but the non-cyanide bath can be used for low hardness plating. Potassium gold cyanide (KAu(CN)2) as a cyanide type and sodium gold sulfite (Na3[Au(SO)3]2) salt as a non-cyanide type are most widely used. Although the cyan bath has excellent performance in plating, potassium gold cyanide (KAu(CN)2) used in the cyan bath is classified as a poison and a toxic substance and has strong toxicity, which tends to damage the positive photoresist film and make it difficult to form a straight side-wall. There is a need to supplement this. Therefore, it is intended to supplement this with an eco-friendly process using sodium sulfite sodium salt that does not contain cyan. Therefore, the main goal is to form a gold plating layer with a controllable hardness using a non-cyanide gold plating solution. In this study, the composition of a non-cyanide gold plating solution that maintains hardness even after annealing is generated through gold-palladium alloying by adding thallium, a crystal regulator among electrolysis factors affecting the structure and hardness, and changes in plating layer structure and crystallinity before and after annealing the correlation with the hardness.

Concurrent Electrocatalysis and Sensing of Hydrazine and Sulfite and Nitrite Ions using Electrodeposited Gold Nanostructure-Modified Electrode

  • Seo, Yeji;Manivannan, Shanmugam;Kang, Inhak;Shin, Woo-Seung;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2017
  • Concurrent electrocatalysis and sensing of hydrazine, sulfite ions, and nitrite ions in a mixture were studied using electrodes modified by electrodeposited Au nanostructures (NSs). The ${\beta}$-cyclodextrin-mixed silicate sol-gel composite was drop-casted on the electrode surface and nucleation guided by ${\beta}$-cyclodextrin occurred, followed by the electrodeposition of Au NSs. The additive, ${\beta}$-cyclodextrin, played an evident role as a structure-directing agent; thus, small raspberry-like Au NSs were obtained. The modified electrodes were characterized by surface characterization techniques and electrochemical methods. The Au NSs-modified electrodes effciently electrocatalyzed the oxidation of toxic molecules such as hydrazine and sulfite and nitrite ions even in the absence of any other electron transfer mediator or enzyme immobilization. Well-resolved oxidation peaks along with decreased overpotentials were noticed during the electrooxidation process. The fabricated Au nanostructured electrode clearly distinguished the electrooxidation peaks of each of the three analytes from their mixture.

Surface Morphology and Preferred Orientation of Gold Bump Layer formed by using $Na_3[Au(SO_3)_2]$ (아황산금나트륨염을 이용한 Au 범프용 금도금층의 표면형상 및 우선적 결정 성장방향)

  • Kim, In-Su;Yang, Seong-Hun;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.673-681
    • /
    • 1995
  • Surface morphology and preferred orientation of 20${\mu}{\textrm}{m}$ gold electrodeposit formed from aqueous solution of the sodium gold sulfite were studied in terms of current density, plating temperature and Au concentration. As the current density changed from 13.0mA/$\textrm{cm}^2$ to 4.6mA/$\textrm{cm}^2$, the solution temperature from 3$0^{\circ}C$ to 6$0^{\circ}C$, pH from 12.0 to 9.0, agitation speed from 0 rpm to 3200rpm and Au concentration from 10g/1 to 14 g/1, local Au concentration near the cathodic surface increased. With increasing the Au concentration, the surface morphology chanced from porous structure to fine-grained structure. Furthermore, it was observed that the preferred orentation of the Au layer changed from (111) to (220) upon the same variation In the Au concentration. The surface morphology and the preferred orientation of the Au layer were found to be closely related to each other.

  • PDF