DOI QR코드

DOI QR Code

Concurrent Electrocatalysis and Sensing of Hydrazine and Sulfite and Nitrite Ions using Electrodeposited Gold Nanostructure-Modified Electrode

  • Seo, Yeji (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Kang, Inhak (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Shin, Woo-Seung (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University) ;
  • Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
  • Received : 2016.12.05
  • Accepted : 2017.01.02
  • Published : 2017.03.31

Abstract

Concurrent electrocatalysis and sensing of hydrazine, sulfite ions, and nitrite ions in a mixture were studied using electrodes modified by electrodeposited Au nanostructures (NSs). The ${\beta}$-cyclodextrin-mixed silicate sol-gel composite was drop-casted on the electrode surface and nucleation guided by ${\beta}$-cyclodextrin occurred, followed by the electrodeposition of Au NSs. The additive, ${\beta}$-cyclodextrin, played an evident role as a structure-directing agent; thus, small raspberry-like Au NSs were obtained. The modified electrodes were characterized by surface characterization techniques and electrochemical methods. The Au NSs-modified electrodes effciently electrocatalyzed the oxidation of toxic molecules such as hydrazine and sulfite and nitrite ions even in the absence of any other electron transfer mediator or enzyme immobilization. Well-resolved oxidation peaks along with decreased overpotentials were noticed during the electrooxidation process. The fabricated Au nanostructured electrode clearly distinguished the electrooxidation peaks of each of the three analytes from their mixture.

Keywords

References

  1. Ismail, A. A., Harraz, F. A., Faisal, M., El-Toni, A. M., Al-Hajry, A., & Al-Assiri, M. S., Materials and Design, 2016, 109, 530-8. https://doi.org/10.1016/j.matdes.2016.07.107
  2. M.M. Rahman, A. Khan, H.M. Marwani, A.M. Asiri, Microchimica Acta, 2016, 183(5), 1787-96. https://doi.org/10.1007/s00604-016-1809-4
  3. R. Arce, M.J. Aguirre, J. Romero, ECS Transactions, 2014, 64(1), 37-42. https://doi.org/10.1149/06401.0037ecst
  4. R. Liu, J. Zhao, Z. Huang, L. Zhang, M. Zou, B. Shi, et al, Sensors and Actuators, B: Chemical, 2017, 240, 604-12. https://doi.org/10.1016/j.snb.2016.09.008
  5. S. Garrod, M.E. Bollard, A.W. Nicholls, S.C. Connor, J. Connelly, J.K. Nicholson, et al., Chemical Research in Toxicology, 2005, 18(2), 115-22. https://doi.org/10.1021/tx0498915
  6. A. Safavi, A.A. Ensafi, Analytica Chimica Acta, 1995, 300(1-3), 307-11. https://doi.org/10.1016/0003-2670(94)00383-W
  7. H.Y. Qin, Z.X. Liu, W.X. Yin, J.K. Zhu, Z.P. Li, Journal of Power Sources, 2008, 185(2), 895-898. https://doi.org/10.1016/j.jpowsour.2008.08.052
  8. S. Durga, K. Ponmani, S. Kiruthika, B. Muthukumaran, Journal of Electrochemical Science and Technology, 2014, 5(3), 73-81. https://doi.org/10.5229/JECST.2014.5.3.73
  9. I. Kang, W-s. Shin, S. Manivannan, Y. Seo, K. Kim, Journal of Electrochemical Science and Technology, 2016, 7(4), 277-285. https://doi.org/10.5229/JECST.2016.7.4.277
  10. E. Dinckaya, M.K. Sezginturk, E. Akyilmaz, F.N. Ertas, Food Chemistry, 2007, 101(4), 1540-1544. https://doi.org/10.1016/j.foodchem.2006.04.006
  11. C.A. Caro, F. Bedioui, J.H. Zagal, Electrochimica Acta, 2002, 47(92), 1489-1494. https://doi.org/10.1016/S0013-4686(01)00875-1
  12. X.H. Pham, C.A. Li, K.N. Han, B.C. Huynh-Nguyen, T.H. Le, E. Ko, et al., Sensors and Actuators, B: Chemical, 2014, 193(2014), 815-822. https://doi.org/10.1016/j.snb.2013.12.034
  13. A.A. Ensafi, M. Amini, Sensors and Actuators, B: Chemical, 2010, 147(1), 61-66. https://doi.org/10.1016/j.snb.2010.03.014
  14. M. Shanmugam, K. Kim, Journal of Electroanalytical Chemistry, 2016, 776, 82-92. https://doi.org/10.1016/j.jelechem.2016.06.009
  15. G. Maduraiveeran, R. Ramaraj, Electrochemistry Communications, 2007, 9(8), 2051-2055. https://doi.org/10.1016/j.elecom.2007.05.021
  16. S. Manivannan, R. Ramaraj, Pure and Applied Chemistry, 2011, 83(11), 2041-2053. https://doi.org/10.1351/PAC-CON-11-03-04
  17. S. Paul, Journal of Electrochemical Science and Technology, 2016, 7(2), 115-131. https://doi.org/10.5229/JECST.2016.7.2.115
  18. A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, M. Baumer, Science, 2010, 327(5963), 319-322. https://doi.org/10.1126/science.1183591
  19. S. Manivannan, R. Ramaraj, Chemical Engineering Journal, 2012, 210, 195-202. https://doi.org/10.1016/j.cej.2012.08.085
  20. F. Jia, C. Yu, Z. Ai, L. Zhang, Chemistry of Materials, 2007, 19(15), 3648-3653. https://doi.org/10.1021/cm070425l
  21. S. Manivannan, R. Ramaraj, Journal of Nanoparticle Research, 2013, 15(10), 1978 (1-13). https://doi.org/10.1007/s11051-013-1978-6
  22. S. Jayabal, R. Ramaraj, Electrochimica Acta, 2013, 88, 51-58. https://doi.org/10.1016/j.electacta.2012.10.065
  23. S. Manivannan, R. Ramaraj, Journal of Chemical Sciences, 2009, 121(5), 735-743. https://doi.org/10.1007/s12039-009-0088-6
  24. G. Maduraiveeran, R. Ramaraj, Journal of Electroanalytical Chemistry, 2007, 608(1), 52-58. https://doi.org/10.1016/j.jelechem.2007.05.009
  25. S. Manivannan, K. Kim, Electroanalysis, 2016, 28(7), 1608-1616. https://doi.org/10.1002/elan.201501104