• 제목/요약/키워드: Gold ions

검색결과 68건 처리시간 0.02초

A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions

  • Song, Ji-Seon;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권10호
    • /
    • pp.1683-1688
    • /
    • 2007
  • This paper presents a novel simple method for introducing gold nanoparticles in a poly(4-vinylpyridine) (PVP) polymer layer over a glassy carbon (GC) electrode with the aim of forming a tunable electrochemical interface against a cationic ruthenium complex. Initially, AuCl4 ? ions were spontaneously incorporated into a polymer layer containing positively charged pyridine rings in an acidic media by ion exchange. A negative potential was then applied to electrochemically reduce the incorporated AuCl4 ? ions to gold nanoparticles, which was confirmed by the FE-SEM images. The PVP layer with an appropriate thickness over the electrode blocked electron transfer between the electrode and the solution phase for the redox reactions of the cationic Ru(NH3)6 2+ ions. However, the introduction of gold nanoparticles into the polymer layer recovered the electron transfer. In addition, the electron transfer rate between the two phases could be tuned by controlling the number density of gold nanoparticles.

금나노입자 및 금이온의 수서생태독성 연구동향 (Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions)

  • 남선화;안윤주
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.313-319
    • /
    • 2012
  • Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.

The Effects of Ambient Ions on the Growth of Gold Nanoparticles by Laser Ablation in Liquid

  • Kwon, Hyejin;Kim, Kuk Ki;Song, Jae Kyu;Park, Seung Min
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.865-870
    • /
    • 2014
  • Gold nanoparticles (AuNPs) were synthesized by laser (Nd:YAG, ${\lambda}$ = 1064 nm) ablation of a gold target immersed in various aqueous electrolyte solutions (7 mM of LiCl, NaCl, KCl, NaBr, and NaI) as well as in deionized water. The surface plasmon absorption and EDX of AuNPs so produced as well as their TEM images were analyzed to investigate the effects of ambient ions on the growth and aggregation of NPs. The size of AuNPs was reduced by laser ablation in the presence of chloride and bromide ions while it increased drastically when AuNPs were formed in iodide solution. Interestingly, triangular nanoplates were synthesized only in iodide solution. Surface chemistry on AuNPs in various electrolyte solutions was explored to elucidate the role of ions on the size and stability of AuNPs.

킬레이트 수지에 의한 몇가지 금속이온의 분리 농축에 관한 연구 (Separation and concentration of some ions by chelate resin)

  • 차기원;박찬일;유정숙;황화자;장병두
    • 분석과학
    • /
    • 제17권3호
    • /
    • pp.278-281
    • /
    • 2004
  • The separation and concentration method of gold(III) and platium(IV) ions from other ions has been investigated using chelate resin, Amberlite IRC 718 in the mixed solution. The adsorption and desorption capacity of ions on the chelate resin in mixed solution were measured at room temperature. Using the data, gold(III) and platium(IV) ions were separated and concentrated in the ions solution.

A Reusable Pb2+ Detecting Aptasensor Employing a Gold Nanorod-DNAzyme Conjugate

  • Lee, Jayeon;Ha, Tai Hwan
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.190-195
    • /
    • 2015
  • Here, we demonstrated a $Pb^{2+}$ detecting aptasensor using $Pb^{2+}$-sensitive DNAzyme-conjugated gold nanorods (GNRs). Fluorescent DNA substrates that were initially quenched by GNRs, are released in response to $Pb^{2+}$ ions to give a substantial fluorescence signal. The GNR-tethered DNAzyme is reusable at least three times with a LOD of 50 nM.

Sorption and Separation of Thiocyanate Gold and Silver Complexes and Determination of Gold by Diffuse Reflectance Spectroscopy

  • Danilenko, N.V.;Kononova, O.N.;Kachin, S.V.;Kholmogorov, A.G.;Dmitrieva, Zh.V.;Plotnikova, E.A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권7호
    • /
    • pp.1019-1024
    • /
    • 2004
  • The present paper is focused on simultaneous sorption concentration of gold (III) and silver (I) from thiocyanate solutions using high-selective anion exchanger AN-25 and subsequent separation of these ions at various concentrations of thiocarbamide (eluent). As a result, silver (I) ions are completely eluted from AN-25 and gold (III) ions remain in the resin phase and can be determined directly in the solid phase by diffuse reflection spectroscopy. It is proposed to use the sorption-spectroscopic method for Au(III) determination in aqueous solutions. The calibration curve is linear in the concentration range of 1-19 mg/L (sample volume is 10.0 mL) and the detection limit is 0.05 ${\mu}g/mL$. The presence of Cu(II), Co(II), Fe(II) do not hinder this determination. Au(III) was determined in industrial solutions.

ICP-AES와 MIBK 용매를 이용한 광물중의 금 분석 (Determination of gold concentration in ore by ICP-AES with MIBK)

  • 임헌성;이석근
    • 분석과학
    • /
    • 제20권6호
    • /
    • pp.496-501
    • /
    • 2007
  • ICP-AES를 이용하여 금을 분석할 때 감도가 가장 우수한 242.795 nm 파장은 분광학적 간섭을 일으키는 망간, 크롬, 코발트, 철 등의 원소들 때문에 광물에서 금의 분석은 불가능하다. 여기에서는 이들 원소들을 정량적으로 분리하는 분리방법을 연구하였다. 광물에서 금을 분리하기 위하여 광물을 용해한 산 용액에 MIBK 용매를 사용하여 정량적으로 추출하였다. 이때 질산과 염산의 혼산과 MIBK/n-hexane의 혼합용매는 효율적으로 금을 추출할 수 있었으며, 회수율은 97.5% 이상이었다.

Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode

  • Song, Ji-Seon;Shin, Hyo-Sul;Kang, Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1983-1987
    • /
    • 2008
  • This study demonstrates the electrochemical conversion of the synthetic procedure of monolayer-protected clusters using a thin toluene layer over an edge plane pyrolytic graphite electrode. A thin toluene layer with a thickness of 0.31 mm was coated over the electrode and an immiscible liquid/liquid water/toluene interface was introduced. The transfer of the tetrachloroaurate ($AuCl_4^-$) ions into the toluene layer interposed between the aqueous solution and the electrode surface was electrochemically monitored. The $AuCl_4^-$ ions initially could not move through into the toluene layer, showing no reduction wave, but, in the presence of the phase transfer reagent, tetraoctylammonium bromide (TOABr), a cathodic wave at 0.23 V vs. Ag/AgCl was observed, indicating the reduction of the transferred $AuCl_4^-$ ions in the toluene layer. In the presence of dodecanethiol together with TOABr, a self-assembled monolayer was formed over the electro-deposited metallic gold surface. The E-SEM image of the surface indicates the formation of a highly porous metallic gold surface, rather than individual nanoparticles, over the EPG electrode.

Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.

  • Niranjan Dhanasekar, Naresh;Ravindran Rahul, Ganga;Badri Narayanan, Kannan;Raman, Gurusamy;Sakthivel, Natarajan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1129-1135
    • /
    • 2015
  • The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au3+ to Au0. TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.

The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores

  • Park, Sang-Eun;Park, Min-Yim;Han, Po-Keun;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1341-1345
    • /
    • 2006
  • An electrostatic interaction is responsible for the attachment of gold seeds of 1-3 nm onto APTMS (3-aminopropyl trimethoxysilane)-coated silica cores in the formation of gold clusters. A surface plasmon resonance and morphology of gold clusters were significantly affected by the pH of gold colloids prepared by THPC reducing agent. Gold colloids of alkaline pH induced the heterogeneous deposition of gold seeds onto the silica nanoparticles, probably due to the continuous reduction of residual gold ions during the attachment process. Gold colloids of acidic pH induced the monodisperse deposition of gold seeds, consequently leading to the formation of smooth gold layer on the silica nanoparticles surface. The gold nanoshells (core radius = 80 nm) prepared by gold colloids of pH 3.1 exhibited the more red-shift and relatively stronger intensity of plasmon absorption bands, compared with gold nanoshells prepared by alkaline gold colloids of pH 9.7.