Browse > Article
http://dx.doi.org/10.4014/jmb.1410.10036

Green Chemistry Approach for the Synthesis of Gold Nanoparticles Using the Fungus Alternaria sp.  

Niranjan Dhanasekar, Naresh (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Ravindran Rahul, Ganga (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Badri Narayanan, Kannan (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Raman, Gurusamy (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Sakthivel, Natarajan (Department of Biotechnology, School of Life Sciences, Pondicherry University)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.7, 2015 , pp. 1129-1135 More about this Journal
Abstract
The synthesis of gold nanoparticles has gained tremendous attention owing to their immense applications in the field of biomedical sciences. Although several chemical procedures are used for the synthesis of nanoparticles, the release of toxic and hazardous by-products restricts their use in biomedical applications. In the present investigation, gold nanoparticles were synthesized biologically using the culture filtrate of the filamentous fungus Alternaria sp. The culture filtrate of the fungus was exposed to three different concentrations of chloroaurate ions. In all cases, the gold ions were reduced to Au(0), leading to the formation of stable gold nanoparticles of variable sizes and shapes. UV-Vis spectroscopy analysis confirmed the formation of nanoparticles by reduction of Au3+ to Au0. TEM analysis revealed the presence of spherical, rod, square, pentagonal, and hexagonal morphologies for 1 mM chloroaurate solution. However, quasi-spherical and spherical nanoparticles/heart-like morphologies with size range of about 7-13 and 15-18 nm were observed for lower molar concentrations of 0.3 and 0.5 mM gold chloride solution, respectively. The XRD spectrum revealed the face-centered cubic crystals of synthesized gold nanoparticles. FT-IR spectroscopy analysis confirmed the presence of aromatic primary amines, and the additional SPR bands at 290 and 230 nm further suggested that the presence of amino acids such as tryptophan/tyrosine or phenylalanine acts as the capping agent on the synthesized mycogenic gold nanoparticles.
Keywords
Alternaria sp.; filamentous fungus; gold nanoparticles; surface plasmon resonance; electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Szunerits S, Boukherroub R. 2006. Electrochemical investigation of gold/silica thin film interfaces for electrochemical surface plasmon resonance studies. Electrochem. Commun. 8: 439-444.   DOI
2 Thakker JN, Dalwadi P, Dhandhukia C. 2013. Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnol. 2013: 515091.
3 Verma VC, Singh SK, Solanki R, Prakash S. 2011. Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Res. Lett. 6: 16-22.   DOI
4 Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61: 1413-1418.   DOI
5 Vijayakumar PS, Prasad BLV. 2009. Intracellular biogenic silver nanoparticles for the generation of carbon supported antiviral and sustained bactericidal agents. Langmuir 25: 11741-11747.   DOI
6 Xu F, Zhang Q, Gao Z. 2013. Simple one-step synthesis of gold nanoparticles with controlled size using cationic Gemini surfactants as ligands: effect of the variations in concentrations and tail lengths. Colloids Surf. A Physicochem. Eng. Aspects 417: 201-210.   DOI
7 Narayanan KB, Sakthivel N. 2011. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf. B Physicochem. Eng. Aspects 380: 156-161.   DOI
8 Peng HP, Liang RP, Zhang L, Qiu JD. 2013. Facile preparation of novel core-shell enzyme Au-polydopamineFe3O4 magnetic bionanoparticles for glucose sensor. Biosens. Bioelectron. 42: 293-299.   DOI
9 Popovtzer R, Agrawal A, Kotov NA, Popovtzer A, Balter J, Carey TE, Kopelman R. 2008. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 8: 4593-4596.   DOI
10 Riddin TL, Gericke M, Whiteley CG. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17: 3482-3489.   DOI
11 Saha S, Sarkar J, Chattopadhyay D, Patra S, Chakraborty A, Acharya K. 2010. Production of silver nanoparticles by a phytopathogenic fungus Bipolaris nodulosa and its antimicrobial activity. Dig. J. Nanomater. Biostruct. 5: 887-895.
12 Sarkar J, Ray S, Chattopadhyay D, Laskar A, Acharya K. 2012. Mycogenesis of gold nanoparticles using a phytopathogen Alternaria alternata. Bioprocess Biosyst. Eng. 35: 637-643.   DOI
13 Song JY, Jang HK, Kim BS. 2009. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Proc. Biochem. 44: 1133-1138.   DOI
14 Sosa IO, Noguez C, Barrera RG. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107: 6269-6275.   DOI
15 Kumar S, Gandhi KS, Kumar R. 2007. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 46: 3128-3136.   DOI
16 Kar PK, Murmu S, Saha S, Tandon V, Acharya K. 2014. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9: e84693.   DOI
17 Kasten BB, Liu T, Nedrow-Byers JR, Benny PD, Berkman CE. 2013. Targeting prostate cancer cells with PSMA inhibitor-guided gold nanoparticles. Bioinorg. Med. Chem. Lett. 23: 565-568.   DOI
18 Kitching M, Ramani M, Marsili E. 2014. Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnol. DOI: 10.1111/1751-7915.12151.   DOI
19 Milligan AJ, Morel FMM. 2002. A proton buffering role for silica in diatoms. Science 297: 1848-1850.   DOI
20 Mishra A, Tripathy SK, Wahab R, Jeong SH, Hwang I, Yang YB, et al. 2011. Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl. Microbiol. Biotechnol. 92: 617-630.   DOI
21 Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M. 2002. Extracellular synthesis of gold nanoparticles using the fungus Fusarium oxysporum. Chembiochem 5: 461-463.   DOI
22 Mulvaney P. 1996. Surface plasmon spectroscopy of nanosized metal nanoparticles. Langmuir 12: 788-800.   DOI
23 Narayanan KB, Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Interf. Sci. 156: 1-13.   DOI
24 Corma A, Garcia H. 2008. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37: 2096-2126.   DOI
25 Fayaz AM, Girilal M, Rahman M, Venkatesan R, Kalaichelvan PT. 2011. Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Proc. Biochem. 46: 1958-1962.   DOI
26 Das SK, Liang J, Schmidt M, Laffir F, Marsili E. 2012. Biomineralization mechanism of gold by zygomycete fungi Rhizopus oryzae. ACS Nano 6: 6165-6173.   DOI
27 El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H. 2008. Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur. Phys. J. Special Topics 153: 361-364.   DOI
28 Eustis S, El-Sayed MA. 2006. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35: 209-217.   DOI
29 Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679.   DOI
30 He S, Zhang Y, Guo Z, Gu N. 2008. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulate. Biotechnol. Prog. 24: 476-480.   DOI
31 He Y, Yuan J, Su F, Xing X, Shi G. 2006. Bacillus subtilis assisted assembly of gold nanoparticles into long conductive nodous ribbons. J. Phys. Chem. B 110: 17813-17818.   DOI
32 Jha AK, Prasad K, Prasad K. 2009. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J. 43: 303-306.   DOI
33 Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. 2011. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf. B Biointerf. 83: 42-48.   DOI
34 Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. 2003. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermonospora sp. Langmuir 19: 3550-3553.   DOI
35 Bhainsa KC, D’Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerf. 47: 160-164.   DOI
36 Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, et al. 2010. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J. Am. Chem. Soc. 132: 4678-4684.   DOI