• Title/Summary/Keyword: Gold electrodes

Search Result 150, Processing Time 0.03 seconds

MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors

  • Yang, Seongjin;Lim, Hyun Jee;Jeon, Hyungkook;Hong, Seong Kyung;Shin, Jung Hwal
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.247-251
    • /
    • 2016
  • Au/PDMS membranes are widely used to fabricate strain sensors which can detect input signals. An interfacial adhesion between metal films and polydimethylsiloxane (PDMS) substrates is one of the important factors determining the performance of strain sensors, in terms of robustness, reliability, and sensitivity. Here, we fabricate Au/PDMS membranes with (3-mercaptopropyl) trimethoxysilane (MPTMS) treatment. PDMS membranes were fabricated by spin-coating and the thickness was controlled by varying the spin rates. Au electrodes were deposited on the PDMS membrane by metal sputtering and the thickness was controlled by varying sputtering time. Owing to the MPTMS treatment, the interfacial adhesion between the Au electrode and the PDMS membrane was strengthened and the membrane was highly transparent. The Au electrode, fabricated with a sputtering time of 50 s, had the highest gauge factor at a maximum strain of ~0.7%, and the Au electrode fabricated with a sputtering time of 60 s had the maximum strain range among sputtering times of 50, 60, and 120 s. Our technique of using Au/PDMS with MPTMS treatment could be applied to the fabrication of strain sensors.

Fabrication of embedded bottom electrodes for submicron beam resonators (서브마이크론 빔 레조네이터 제작을 위한 바닥전극 형성방법)

  • Lee, Yong-Seok;Jang, Yun-Ho;Bang, Yong-Seung;Kim, Jung-Mu;Kim, Jong-Man;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.131-132
    • /
    • 2008
  • We describe a fabrication method of submicron glass trenches which have embedded metal lines for the future application of nano-scale RF MEMS devices. The glass wafer was etched using two different conditions to identify the relationship between the slope of glass trenches and the slope of photroresist. A self-aligned metal photomask and negative photroresist (PR) slope were used to insert metal lines inside the glass trenches. The PR slope patterned by backside photolithography was affected by the profile of preformed glass trenches. Gold was well fabricated in the $0.7{\mu}m$ wide trench thanks to the negative PR slope. Nano-scale glass trenches with embedded metal lines can be used as a bottom electrode in submicron beam resonators operating with a high resonant frequency.

  • PDF

Oscillatory Josephson-Vortex Resistance in Stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$ Intrinsic Josephson Junctions

  • Choi Jae-Hyun;Bae Myung-Ho;Lee Hu-Jong;Kim Sang-Jae
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.17-21
    • /
    • 2005
  • We report the oscillation of the Josephson vortex-flow resistance in the rectangular stacks of $Bi_{2}Sr_{2}CaCu_{2}O_{8+x}$(Bi-2212) intrinsic Josephson junctions (IJJs). Apiece of Bi-2212 single crystal containing a few tens of IJJs was sandwiched between two gold electrodes and fabricated into a rectangular shape with the typical lateral size of about $1.5{\times}10\;{\mu}m^2$, using e-beam lithography and focused ion-beam etching techniques. In a tesla-range magnetic field applied in parallel with the junction planes, the oscillation of the Josephson vortex flow resistance was observed at temperatures near 60 K. The oscillation results from the interplay between the triangular Josephson vortex lattice and the potential barrier at the boundary of a single crystal. The oscillatory magnetoresistance for different bias currents, external magnetic fields, and the tilt-angles provides useful information on the dynamics of the coupled Josephson-vortex lattice system.

  • PDF

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Electrochemical Properties of Self-Assembled Viologen Monolayers Using Quartz Crystal Analyzer (QCA를 이용한 자기조립된 Viologen 단분자막의 전기화학적 특성)

  • Lee, Dong-Yun;Park, Sang-Hyun;Shin, Hoon-Kyu;Park, Jae-Chul;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.141-144
    • /
    • 2004
  • Molecular self-assembled of surfactant viologens are recently interesting because they can be from functional electrodes as well as micelle assemblies which can be profitably utilized for display devices, electrochemical studies and electrocatalysis as electron acceptor or electron mediator. The electrochemical behavior of self-assembled viologen monolayer on Au electrode surface has been investigated with QCM which has been known as nano-gram order mass detector. A monolayer of viologen is immobilized on the gold electrode surface and the normal potentials corresponding to the to the successive one-electron transfer processes of the viologen actives are two peaks in 0.1mol/l phosphate buffer solution respectively. These result suggest that the viologen SAMs are stable and well-behaved monolayers.

  • PDF

Detection of Influenza A Virus by Interdigitated Nanogap Devices

  • Park, Jimin;Park, Dae Keun;Lee, Cho Yeon;Kang, Aeyeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.419-419
    • /
    • 2014
  • Interdigitated nanogap device (IND) is an attractive tool for biomolecular detection due to its huge on-off signal ratio, great tolerance to the variation in biochemical environment, and relatively simple implementation processes. Here, we report on the IND-based detection of Influneza A virus by sandwich immunoassay. The INEs were fabricated by photo lithography followed by the in-house chemical lithographic technique for the narrowing the initial gap distance. The surface of the silicon oxide between the two gold electrodes was chemically modified to immobilize primary antibodies for the immuno-specific interaction with the influenza A virus antigen. After immersing the functionalized-IND into the sample solution containing the influenza A virus, the device was exposed to the secondary antibody conjugated Au nanoparticles (Au NPs). The INDs showed a huge jump in the electric conductance when the sample solution contained the influenza A virus of the concentration as low as 10 ng/mL. We hope that this IND-based sensing can be applied to the development of simple and reliable diagnostic means of influenza viruses.

  • PDF

Development of piezoelectric immunosensor for the rapid detection of marine derived pathogenic bacteria, Vibrio vulnificus

  • Hong, Suhee;Jeong, Hyun-Do
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.99-105
    • /
    • 2014
  • Biosensors consist of biochemical recognition agents like antibodies immobilized on the surfaces of transducers that change the recognition into a measurable electronic signal. Here we report a piezoelectric immunosensor made to detect Vibrio vulnificus. A 9MHz AT-cut piezoelectric wafer attached with two gold electrodes of 5mm diameter was used as the transducer of the QCM biosensor with a reproducibility of ${\pm}0.1Hz$ in frequency response. We have tried different approaches to immobilize antibody on the sensor chip. Concerning the orientation of antibody for the best antigen binding capacity, the antibody was immobilized by specific binding to protein G or by cross-linking through hydrazine. In addition, protein G was cross-linked on glutaraldehyde activated immine layer (PEI) or EDC/NHS activated sulfide monolayer (MPA). PEI was found to be more effective to immobilize protein G following glutaraldehyde activation than MPA. However, hydrazine chip showed a better capability to immobilize more IgG than protein G chip and a higher sensitivity. The sensor system was able to detect V. vulnificus in dose dependent manner and was able to detect bacterial cells within 5 minutes by monitoring frequency shifts in real time. The detection limit can be improved by preincubation to enrich the bacterial cell number.

Preparation and Properties of Polymer Blends Type Humidity Sensor for Process Safety (공정안전용 Polymer Blend형 습도센서의 특성 연구)

  • Kang Young-Goo;Cho Myoung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.51-56
    • /
    • 2004
  • Conductive polymer blends and composites are widely used for different safety application such as electrostatic charge dissipation(ESD), electromagnetic interference(EMI) shielding, electrostatic prevention and safety chemical sensor. In order to prepare a impedance-type humidity sensor that is durable at high humidities and high temperature, electically conductive polymer blends based on diallyldimethylammonium chloride(DADMAC) and epoxy were prepared in this study. The polymer blends type conductive ionomer exhibits reaction each other DADMAC and epoxy in FT-IR and DSC analysis. The blends material was traced by new peak at 1600cm-1 and appeard improvement of thermal resistance by melting point shift. Alumina substrate was deposited a pair of gold electrodes by screen printing. The blend material were spin-coated with a thin film type on the surface of alumina substrate. The polymer bleld type sensor exhibits a linear impedance increasing better than DADMAC coated humidity sensor. Also it shows good sensitivity, low hysteresis and durability against high humidity.

Characteristic Analysis of Cyclic Voltammetry on a Self-Assembled Mono-layer Electrode (자가조립 단층 전극에 대한 순환전위법의 특성해석)

  • Cho, Hana;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • In this paper, we have investigated the characteristics of cyclic voltammetry of a self-assembled mono-layer(SAM) electrode which was modified by 3-Mercaptopropionic acid (3-MPA) on gold nanoparticle(AuNP)-deposited electrode. Also, the transport phenomena of electrons and ions around the electrode have been analyzed. The governing equation and its boundary conditions by adopting the semi-infinite diffusion model were formulated for the mass-transfer dominant system. In order to obtain the numerical solutions of cyclic voltammetry(CV) on SAM electrodes, MATLAB program was implemented by applying the explicit finite difference method. Resulting CV program for the SAM-modified electrode was verified in good agreements with the experimental CV results for the 3-MPA on AuNP electrode.

A STUDY ON THE ELECTRICAL CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTORS WITH SURFACE-TREATED GATE DIELECTRIC LAYER (표면 처리한 $SiO_2$를 게이트 절연막으로 하는 박막 트랜지스터의 특성 연구)

  • Lee, Jae-Hyuk;Lee, Yong-Soo;Park, Jae-Hoon;Choi, Jong-Sun;Kim, Eu-Gene
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.455-457
    • /
    • 2000
  • In this work the electrical characteristics of organic TFTs with the semiconductor-insulator interfaces, where the gate dielectrics were treated by the two methods which are the deposition of Octadecyltrichlorosilane (OTS) on the insulator and rubbing the insulator surface. Pentacene is used as an active semiconducting layer. The semiconductor layer of pentacene was thermally evaporated in vacuum at a pressure of about $2{\times}10^{-7}$ Torr and at a deposition rate of $0.3{\AA}/sec$. Aluminum and gold were used for the gate and source/drain electrodes. OTS is used as a self-alignment layer between $SiO_2$ and pentacene. The gate dielectric surface was rubbed before pentacene is deposited on the insulator. In order to confirm the changes of the surface morphology the atomic force microscopy (AFM) was utilized. The characteristics of the fabricated TFTs are measured to clarify the effects of the surface treatment.

  • PDF