• Title/Summary/Keyword: Gold electrodes

Search Result 150, Processing Time 0.029 seconds

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Directed Alignment of DNA Molecule between the gold electrodes (금 전극위에 DNA 분자의 정렬에 관한 연구)

  • Hwang, Hyun Suk;Kim, Hyung Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5586-5590
    • /
    • 2015
  • In this paper, the directed alignment methode of the DNA molecule between the Au electrodes was suggested for the application of nano devices. To fabricate the nano device coated DNA, 2-Aminoethanthiol(AET) was coated on Au electrodes which was formed using photo-lithography process on $SiO_2/Si$ substrates. In general, the AET that was a positive charge with $NH^{3+}$ was strongly combined under the electrostatic interaction with DNA molecule which had to be a negative charge. The DNA molecules could be easily aligned between Au electrodes coated with AET. The structures of the DNA molecules were investigated using AFM(Atomic force microscope), they were changed from single types to bundle according to the AET concentrations.

Assay of Trace Gold Ion in a Skin Cell Using a Stripping Voltammetry

  • Ly, Suw-Young;Lee, Jin-Hui;Yi, Jae-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Threelectrodes systems were used in stripping voltammetry (SW) and cyclic voltammetry (CV) instead of the expensive platinum and Ag/AgCl reference electrodes. Moreover, the electrolyte solution was used with deep seawater, which can reduce water pollution, is more eco-friendly, and has a lower cost. The analytical optimum parameters measured via CV and SW and with working ranges were obtained from 10 to 80 ug/L using fluorine immobilized on a graphite pencil electrode (FE). Under the optimum conditions, the analytical detection limit of 6.30 ug/LAu was obtained. The results of the study can be applied to diagnostic assay for natural minerals and human finger tissue.

PVDF interdigitated transducer for generating and detecting Lamb waves in plates

  • Gu, Hua;Lloyd, George M.;Wang, Ming L.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.291-304
    • /
    • 2008
  • Piezoelectric materials have been widely used in ultrasonic nondestructive testing (NDT). PZT ceramics can be used to receive and generate surface acoustic waves. It is a common application to attach PZT transducers to the surface of structures for detecting cracks in nondestructive testing. However, not until recently have piezoelectric polymers attracted more and more attention to be the material for interdigitated (IDT) surface and guided-wave transducers. In this paper, an interdigitated gold-on-polyvinylidene fluoride (PVDF) transducer for actuating and sensing Lamb waves has been introduced. A specific etching technology is employed for making the surface electrodes into a certain finger pattern, the spacings of which yield different single mode responses of Lamb waves. Experiments have been performed on steel and carbon fiber composite plates. Results from PVDF IDT sensors have been compared with those from PZT transducers for verification.

Enhanced Photodetection with Hot Electrons in Graphene-mediated Plasmonic Nanostructure

  • Kim, Jeong Hyeon;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.408-408
    • /
    • 2014
  • Graphene has received attention with its high electron mobility and visual transparency as a promising material for optoelectronic and photonic applications. Combination of graphene and conducting nanostructures i.e. plasmonic structures has recently been researched for enhancing light-matter interaction and overcoming diffraction limit of light. Here we show enhanced photodetection of incoherent visible light with graphene-mediated plasmonics. Gold nanoparticles fabricated by focused ion beam was used as an active element of photodetection and graphene was utilized as an interfacing material between nanostructures and electrodes. Hot electrons generated upon plasmon decay within nanoparticles pass over the potential barrier between nanostructure and graphene and give rise to a photocurrent with built-in electric field. We report 76.7% enhancement of photocurrent under resonant irradiation of fiber-coupled halogen lamp compared to the case without light illumination. We showed wavelength-dependent current response arisen from plasmonic nanostructure, providing a good agreement with theoretical calculation.

  • PDF

Electrochemical Method for Detecting Hippuric Acid Using Osmium-antigen Conjugate on the Gold Nanoparticles Modified Screen-printed Carbon Electrodes

  • Choi, Young-Bong;Kim, Hyug-Han
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.57-61
    • /
    • 2011
  • This paper describes an electrochemical immunoassay for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The electrochemical system of immunoassay was based on the directly osmium complex conjugated with hippuric acid. With the competition between free hippuric acid (HA) and the osmium-hippuric acid conjugate (Os-HA) to bind with antibody hippuric acid (Anti-HA) coated onto gold nanoparticles, the electrical signals were proportional to urinary hippuric acid (HA) in the range of 0.01-5 mg/mL which is enough range to be used for in-field or point-of-care (POC) diagnosis. The proposed electrochemical method can be extended to the applications to detect a wide range of different small molecules in the field of health care.

Development of a Cross Capacitor Electrode for Measurements of Liquids Dielectric Constants (액체의 유전상수 정밀측정용 크로스 커패시터 전극 개발)

  • ;;;YU. p. Semenov
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.675-678
    • /
    • 2000
  • Using the principle of the cross capacitor, a precise system for measuring the electric constants of liquids has been developed. The four electrodes of the cross capacitor were formed around fused-silica tube by plating a gold film. The effect of a non-uniform tube wall ok the measured permittivity was investigated As the individual characteristics of the tubes were determined to be constant, the pure dielectric constants extracted from any effect of the fused-silica material could be precisely derived with uncertainty of less than ${\pm}$ 0.02∼0.05 %.

  • PDF

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.

Carbon nanotube assembly technique using the dielectrophoresis on electrodes (전극위에 유전 영동법을 이용한 탄소 나노튜브의 조립기술)

  • Han C.S.;Seo H.W.;Choi D.G.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1535-1538
    • /
    • 2005
  • We present a mass productive and reproducible assembly technique of a single bundle of single-walled carbon nanotubes (sb-SWNTs) using dielectrophoresis (DEP). Gold electrodes with 10 gaps made via microlithography were used to align the carbon nanotubes (CNTs). The magnitude and type of applied electric field were investigated to verify their effects on CNT assembly. The optimum assembling conditions in which sb-SWNTs could be positioned at a desired site were experimentally identified, and the characteristics of the assembled sb-SWNTs were evaluated from AFM, Raman spectroscopy, and I-V curve. This assembly method has potential for applications such as gas sensors or electronic devices.

  • PDF