• 제목/요약/키워드: Gold (Au)

검색결과 599건 처리시간 0.028초

금나노입자 및 금이온의 수서생태독성 연구동향 (Research Trend of Aquatic Ecotoxicity of Gold Nanoparticles and Gold Ions)

  • 남선화;안윤주
    • 한국물환경학회지
    • /
    • 제28권2호
    • /
    • pp.313-319
    • /
    • 2012
  • Various nanomaterials may flow into the aquatic ecosystem via production, use, and treatment processes. Especially, gold nanoparticles (AuNPs) were categorized as manufactured nanomaterials presented by the Organization for Economic Cooperation and Development Working Party on Manufactured Nanomaterials (OECD WPMN) in 2010. AuNPs have been used in medical area, however, they were reported to induce cytotoxicity and oxidative DNA damage, as well as down-regulation of the DNA repair gene in mice and human cell lines. In this study, the aquatic toxicity data of AuNPs and gold ions were collected, with the specific test methods analyzed with respect to the form and size of AuNPs, test species, exposure duration, and endpoints. Currently, aquatic toxicity data of AuNPs and gold ions have been presented in 14 studies including 4 fish, 6 crustacean, 2 green algae, and 2 macrophytes studies, as well as a further 8 studies including 4 fish, 4 crustacean, 1 platyhelminthes, and 1 green algae, respectively. The AuNPs were 0.8-100 nm in size, as gold nanoparticles, gold nanorod, glycodendrimer-coated gold nanoparticles, and amine-coated gold nanoparticles. The tested endpoints were the individual toxicities, such as mortality, malformation, reproduction inhibition, growth inhibition and genetic toxicity such as oxidative stress, gene expression, and reactive oxygen species formation. The accumulation of AuNPs was also confirmed in the various receptor organs. These results are expected to be useful in understanding the aquatic toxicity of AuNPs and gold ions, as well as being applicable to future toxicity studies on AuNPs.

Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

  • Park, Jung-Shin;Yoon, Jun-Hee;Kim, Hyung-Jun;Huh, Young-Duk;Yoon, Sang-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.819-824
    • /
    • 2010
  • We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

백색 5K Au-Ag-In 합금재의 인듐 첨가량에 따른 물성 변화 (Properties of the White 5K Au-Ag-In Alloys with Indium Contents)

  • 송정호;송오성
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.381-385
    • /
    • 2017
  • In order to replace 14K white gold alloys, the properties of 5K white gold alloys (Au20-Ag80) were investigated by changing the contents of In (0.0-10.0 wt%). Energy dispersive X-ray spectroscopy (EDS) was used to determine the precise content of alloys. Properties of the alloys such as hardness, melting point, color difference, and corrosion resistance were determined using Vickers Hardness test, TGA-DTA, UV-VIS-NIR-colorimetry, and salt-spray tests, respectively. Wetting angle analysis was performed to determine the wettability of the alloys on plaster. The results of the EDS analysis confirmed that the Au-Ag-In alloys had been fabricated with the intended composition. The results of the Vickers hardness test revealed that each Au-Ag-In alloy had higher mechanical hardness than that of 14K white gold. TGA-DTA analysis showed that the melting point decreased with an increase in the In content. In particular, the alloy containing 10.0 wt% In showed a lower melting temperature (> $70^{\circ}C$) than the other alloys, which implied that alloys containing 10.0 wt% In can be used as soldering materials for Au-Ag-In alloys. Color difference analysis also revealed that all the Au-Ag-In alloys showed a color difference of less than 6.51 with respect to 14K white gold, which implied a white metallic color. A 72-h salt-spray test confirmed that the Au-AgIn alloys showed better corrosion resistance than 14K white gold alloys. All Au-Ag-In alloys showed wetting angle similar to that of 14K white gold alloys. It was observed that the 10.0 wt% In alloy had a very small wetting angle, further confirming it as a good soldering material for white metals. Our results show that white 5K Au-Ag-In alloys with appropriate properties might be successful substitutes for 14K white gold alloys.

Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers

  • Kim, Jung-Kil;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • 제16권2호
    • /
    • pp.163-168
    • /
    • 2008
  • Polystyrene/gold nanoparticle (PS/AuNP) composite fibers were fabricated using an electrospinning technique. Transmission electron microscopy (TEM) showed that the diameters of the naphthalenethiol-capped gold nanoparticles (prior to incorporation into the PS fibers) ranged from 2 to 5 nm. UV-vis spectroscopy revealed the surface plasmon peaks of the gold nanoparticles centered at approximately 512 nm, indicating that nano-sized Au particles are well-dispersed in solution. This was consistent with the TEM observations. The electrospun nanofibers of PS/AuNP composites were approximately 60-3,000 nm in diameter. The surface morphology of the PS/AuNP composite and the dispersability of the Au nanoparticles inside of PS after electrospinning process were investigated by SEM and TEM. The thermal behavior of the pure PS and PS/AuNP nanocomposites and fibers were examined by DSC.

충청북도(忠淸北道) 영동지역(永同地域) 금은광상(金銀鑛床)의 금은광화작용(金銀鑛化作用)에 관한 연구(硏究) (Gold-Silver Mineralization of the Au-Ag Deposits at Yeongdong District, Chung-cheongbuk-Do)

  • 최선규;지세정;박성원
    • 자원환경지질
    • /
    • 제21권4호
    • /
    • pp.367-380
    • /
    • 1988
  • Most of the gold (-silver) vein deposits at Yeongdong District are mainly distributed in the precambrian metamorphic rocks. Based on the Ag/Au total production and ore grade ratios, the chemical composition of electrum and the associated sulfides, the gold(-silver) deposits at Yeongdong District may be classified into 4 classes: pyrrhotite - type gold deposits( I), pyrite - type gold deposits (IT A; massive vein), pyrite - type gold deposits (II B; nonmassive vein) and argentite - type gold - silver deposits(III). The chemical study on electrum(including native gold) revealed that Au content (2.8 to 92.4 atomic%) of electrums varies very widely for different classes of deposits. The Au content of electrum associated with pyrrhotite (Class I), ranging from 47.1 to 92.4 atomic% Au, is clearly higher than that associated with pyrite (Classes IIA, IIB and III). In contrast, classes I, II, and III deposits do not show clear differences in Au content of electrum. In general, pyrrhotite - type gold deposits(I) are characterized by features such as simply massive vein morphology, low values in the Ag/Au total production and ore grade ratios, the absence or rarity of silver - bearing minerals except electrum, and distinctively simple mineralogy. Although the geological and mineralogical features and vein morphology of pyrite - type gold deposits(IIA)are very similar to those of pyrrhotite - type gold deposits (I), Class II A deposits reveal significant differences in the associated iron sulfide (i. e. pyrite) with electrum and Au content of electrum. The Ag/Au total production and ore grade ratios from Class II A deposits are relatively slightly higher than those from Class I deposits. Pyrite - type gold deposits(II B) and argentite - type gold - silver deposits (III) have many common features; complex vein morphology, medium to high values in the Ag/Au total production and ore grade ratios and the associated iron sulfide (i. e. pyrite). In contrast to Class II B deposits, Class III deposits have significantly high Ag/Au total production and ore grade ratios. It indicates distinct difference in the abundance of silver minerals (i. e. native silver and argentite). The fluid inclusion analyses and mineralogical data of electrum tarnish method indicate that the gold mineralization of Classes I and II A deposits was deposited at temperatures between $230^{\circ}$ and $370^{\circ}C$, whereas the gold (-silver) mineralization of Classes ITB and ill formed from the temperature range of $150^{\circ}-290^{\circ}C$. Therefore, Classes I and IT A deposits have been formed at higher temperature condition and/or deeper positions than Classes IIB and III.

  • PDF

퍼플골드를 위한 열증착법으로 제조된 Au-Al 합금 박막의 물성연구 (The Properties of Au-Al Alloy Thin Films with a Thermal Evaporator for Purple Gold)

  • 김준환;송오성
    • 한국진공학회지
    • /
    • 제17권5호
    • /
    • pp.466-472
    • /
    • 2008
  • 퍼플골드는 78wt%Au-22wt%Al로 이루어진 합금으로 화학식은 $AuAl_2$로 표현된다. 최근 화이트골드, 핑크골드와 더불어 특유의 적자색 (보라색)이 나는 유색골드의 하나로 장신구나 의장용 소재로 활용되고 있다. 퍼플골드는 Au와 Al의 중간상으로 연성과 주조성이 나쁜 특성이 있어 단조와 주조작업을 통하여 원하는 형상의 퍼플골드를 얻기 힘든 단점이 있다. 따라서 절단과 연마공정만으로 최종제품을 제작하거나 박막으로 증착하여 의장용 소재로 활용하는 것이 가능하다. 본 연구는 순수한 Au와 Al을 소오스로 각각 200nm$SiO_2$/Si기판에 78:22의 무게비로 증착시킨 후 열처리를 시행한 경우와, $AuAl_2$를 용융을 통하여 벌크형으로 얻은 후 이를 소오스로 사용하여 유리기판에 기판온도를 상온으로 유지하면서 진공증착을 통하여 표면처리를 한 경우로 나누어 실험을 진행하였다. 완성된 시편은 육안검사, 미세구조분석, 면저항분석, 색차분석, XRD 분석을 통하여 증착된 퍼플골드의 색과 두께를 위주로 한 물성을 측정하였다. 12.5nmAu/40nmAl/200nm$SiO_2$/Si 구조로 제작하고 열처리 한 경우 과도한 표면응집현상이 일어나면서 퍼플골드가 형성되지 않았다. $AuAl_2$ 소오스로부터 직접 열증착한 경우는 벌크상태와 동일한 적자색을 보였으며 퍼플골드의 의장용으로서 심미적 기능이 가능한 것으로 판단되었다.

Gold Recovery Using Inherently Conducting Polymer Coated Textiles

  • Tsekouras, George;Ralph, Stephen F.;Price, William E.;Wallace, Gordon G.
    • Fibers and Polymers
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The ability of inherently conducting polymer (ICP) coated textiles to recover gold metal from aqueous solutions containing $[AuCl_4]^-$ was investigated. Nylon-lycra, nylon, acrylic, polyester and cotton were coated with a layer of polypyrrole (PPy) doped with 1,5-naphthalenedisulfonic acid (NDSA), 2-anthraquinonesulfonic acid (AQSA) or p-toluenesulfonic acid (pTS). Textiles coated with polyaniline (PAn) doped with chloride were also used. The highest gold capacity was displayed by PPy/NDSA/nylon-lycra, which exhibited a capacity of 115 mgAu/g coated textile, or 9700 mgAu/g polymer. Varying the underlying textile substrate or the ICP coating had a major effect on the gold capacity of the composites. Several ICP coated textiles recovered more than 90 % of the gold initially present in solutions containing 10 ppm $[AuCl_4]^-$ and 0.1 M HCl in less than 1 min. Both PPy/NDSA/nylon-lycra and PAn/Cl/nylon-lycra recovered approximately 60 % of the gold and none of the iron present in a solution containing 1 ppm $[AuCl_4]^-$, 1000 ppm $Fe^{3+}$ and 0.1 M HCl. The spontaneous and sustained recovery of gold metal from aqueous solutions containing $[AuCl_4]^-$ using ICP coated textiles has good prospects as a potential future technology.

AES/XPS를 이용한 Au/V, Au/Ti 박막의 표면산화물 분석 (Characterization of Surface Oxides in Gold Thin Films with V- and Ti- underlays by AES and XPS)

  • Kim, Jin -Young
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.100-105
    • /
    • 1992
  • Au/V, Au/Ti의 이중구조 박막을 대기 중에서 $500^{\circ}C$에서 열처리한 후 Auger electron spectroscopy(AES)와 X-ray photoelectron spectroscepy(XPS)를 이용하여 분석 하였다. 열처리 과정에서 Au와 SiO2 기판 사이의 V-와 Ti- 하층박막은 Au 표면 위에 산화 물을 형성하였다. 산화물의 화학조성은 Au/V, Au/Ti 박막에서 V2O5와 TiO2로 각각 판명되었다.

  • PDF

금 합금 도금층의 접촉저항에 미치는 합금원소의 종류 및 Thermal Aging의 영향 (Effect of Alloying Elements and Thermal Aging on the Contact Resistance of Electroplated Gold Alloy Layers)

  • 이지웅;손인준
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.235-241
    • /
    • 2013
  • In this study, the effects of alloying elements and thermal aging on the contact resistance of electroplated gold alloy layers were investigated by surface analysis using X-ray photoelectron spectroscopy (XPS). The contact resistance of Au-Ag alloy was lower than that of Au-Ni or Au-Co alloy after thermal aging. The XPS results show that nickel and oxygen present as nickel oxides such as NiO and $Ni_2O_3$ on the surface of gold layers after thermal aging. The increase in the contact resistance after thermal aging is attributable to the nickel oxide layer formed on the surface of the gold layers. The content of nickel diffused from the underlayer during the thermal aging was high in the order of Au-Co, Au-Ni and Au-Ag alloy because the area of grain boundary was large in the order of Au-Ag, Au-Ni and Au-Co alloy.

Preparation and Characterization of Silica-coated Gold Nanoflowers (AuNFs) with Raman Dye Encoding

  • Yoo, Jihye;Lee, Sang-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2765-2768
    • /
    • 2014
  • Flower-like Au nanoparticles, so-called Au nanoflowers (AuNFs), were synthesized by simply adding ascorbic acid to a gold acid solution in the presence of a chitosan biopolymer. The chitosan-entangled AuNFs exhibited strong plasmon absorption in the near-infrared (NIR) wavelength due to the aggregation of primary Au nanoparticles. The chitosan-entangled AuNFs were preferentially adsorbed by Raman-active 2-chlorothiophenol (CTP) molecules, and the CTP-encoded AuNFs (AuNF-CTPs) were subsequently coated with a thin silica layer by a sol-gel reaction with Si alkoxides. The silica-coated AuNFs (AuNF-CTPs@silica) exhibited the distinct Raman signals of adsorbed CTP molecules, as a potential nanoprobe with surface-enhanced Raman scattering (SERS).