• Title/Summary/Keyword: Glycoside

검색결과 635건 처리시간 0.032초

Validation of High-Performance Liquid Chromatography Analysis on Phenolic Substances of Cirsium setidens and Sedative Effect of Pectolinarin as the Active Principle

  • Nugroho, Agung;Kim, Myung-Hoe;Lim, Sang-Cheol;Choi, Jong-Won;Choi, Jae-Sue;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제17권4호
    • /
    • pp.342-349
    • /
    • 2011
  • This study was performed to determine the composition of phenolic substances contained in the leaves of Cirsium setidens (Compositae), validate the high-performance liquid chromatography (HPLC) method, and determine the in vivo sedative effect of the main component pectolinarin. Six phenolic compounds isolated from C. setidens were spectroscopically identified as chlorogenic acid (1), hyperoside (2), 3,4-di-O-caffeoylquinic acid (3), caffeic acid methyl ester (4), linarin (5), and pectolinarin (6) and then used as standard compounds for HPLC analysis. HPLC proved to be precise, accurate, and sensitive for the simultaneous analysis of the phenolic substances. In particular, six compounds showed good regression ($R^2$ > 0.999) within test ranges and recovery was in the range of 95.4 - 104.8%. The content of pectolinarin was considerably higher (156.48 mg/g) than those of other phenolic substances including the other flavone glycoside, linarin (18.99 mg/g). The contents of other phenolic substances, in order, were chlorogenic acid (8.41 mg/g), 3,4-di-O-caffeoylquinic acid (5.74 mg/g), hyperoside (4.33 mg/g), and caffeic acid methyl ester (0.51 mg/g). Oral administration with compound 6 (10 and 20 mg/kg) enhanced the sleeping time induced by pentobarbital in mice, indicating that it has a sedative effect.

토사자 에탄올 추출물이 UVB로 유도된 CCD-986Sk cell에서 주름개선 생리지표에 미치는 영향 (fects of Cuscuta Chinensis Lamark Ethanol Extract on Wrinkle Improvement Bio-markers by UVB-induced CCD-986Sk Cell)

  • 주인환;최학주;심부용;민가율;김동희
    • 동의생리병리학회지
    • /
    • 제32권5호
    • /
    • pp.321-327
    • /
    • 2018
  • The purpose of this study was to investigate the effects of Cuscuta chinensis Lamark ethanol extract (CL) on wrinkle improvement. Cuscuta chinensis Lamark is known to contain dried saccharide, alkaloids, flavonoids, lignans and rein glycoside as major components of dried mature seeds of Cuscuta japonica Choisy. In this study, we evaluated the anti-wrinkle effects of CL and investigated bio-markers (e.g ; MMP-1, MMP-3, MMP-9, TIMP-1, type I procollagen) associated with skin wrinkle improvement. We tested the anti-wrinkle effect of CL using human fibroblast called CCD-986Sk cell. We observed an increase in MMPs, TIMP-1, and type 1 pro-collagen CL in CCD-986Sk cells irradiated with UVB at an intensity of $2mJ/cm^2$ for 60 seconds. As a result, CL decreased UVB-induced MMPs levels and mRNA expressions in CCD-986Sk cell. The levels and mRNA expressions of type I procollagen and TIMP-1 were increased by CL. These results suggest that CL has activities on improvement of skin wrinkle, which is induced by UVB radiation. Taken together, this study proposed the possibility of developing herbal medicine and functional herbal cosmetic materials with wrinkle-improving effects of Cuscuta chinensis Lamark.

Molecular Characterization of the α-Galactosidase SCO0284 from Streptomyces coelicolor A3(2), a Family 27 Glycosyl Hydrolase

  • Temuujin, Uyangaa;Park, Jae Seon;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1650-1656
    • /
    • 2016
  • The SCO0284 gene of Streptomyces coelicolor A3(2) is predicted to encode an α-galactosidase (680 amino acids) belonging to glycoside hydrolase family 27. In this study, the SCO0284 coding region was cloned and overexpressed in Streptomyces lividans TK24. The mature form of SCO0284 (641 amino acids, 68 kDa) was purified from culture broth by gel filtration chromatography, with 83.3-fold purification and a yield of 11.2%. Purified SCO0284 showed strong activity against p-nitrophenyl-α-D-galactopyranoside, melibiose, raffinose, and stachyose, and no activity toward lactose, agar (galactan), and neoagarooligosaccharides, indicating that it is an α-galactosidase. Optimal enzyme activity was observed at 40℃ and pH 7.0. The addition of metal ions or EDTA did not affect the enzyme activity, indicating that no metal cofactor is required. The kinetic parameters Vmax and Km for p-nitrophenyl-α-D-galactopyranoside were 1.6 mg/ml (0.0053 M) and 71.4 U/mg, respectively. Thin-layer chromatography and mass spectrometry analysis of the hydrolyzed products of melibiose, raffinose, and stachyose showed perfect matches with the masses of the sodium adducts of the hydrolyzed products, galactose (M+Na, 203), melibiose (M+Na, 365), and raffinose (M+Na, 527), respectively, indicating that it specifically cleaves the α-1,6-glycosidic bond of the substrate, releasing the terminal D-galactose.

A Novel pH-Stable, Bifunctional Xylanase Isolated from a Deep-Sea Microorganism, Demequina sp. JK4

  • Meng, Xin;Shao, Zongze;Hong, Yuzhi;Lin, Ling;Li, Chanjuan;Liu, Ziduo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1077-1084
    • /
    • 2009
  • A genomic library was constructed to clone a xylanase gene (Mxyn10) from Demequina sp. JK4 isolated from a deep sea. Mxyn10 encoded a 471 residue protein with a calculated molecular mass of 49 kDa. This protein showed the highest sequence identity (70%) with the xylanase from Streptomyces lividans. Mxyn10 contains a catalytic domain that belongs to the glycoside hydrolase family 10 (GH10) and a carbohydrate-binding module (CBM) belonging to family 2. The optimum pH and temperature for enzymatic activity were pH 5.5 and $55^{\circ}C$, respectively. Mxyn10 exhibited good pH stability, remaining stable after treatment with buffers ranging from pH 3.5 to 10.0. The protein was not significantly affected by a variety of chemical reagents, including some compounds that usually inhibit the activity of other related enzymes. In addition, Mxyn10 showed activity on cellulose. These properties mark Mxyn10 as a potential enzyme for industrial application and saccharification processes essential for bioethanol production.

Carboxy-Terminal Region of a Thermostable CITase from Thermoanaerobacter thermocopriae Has the Ability to Produce Long Isomaltooligosaccharides

  • Jeong, Woo Soo;Kim, Yu-Ri;Hong, Seong-Jin;Choi, Su-Jeong;Choi, Ji-Ho;Park, Shin-Young;Woo, Eui-Jeon;Kim, Young Min;Park, Bo-Ram
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권12호
    • /
    • pp.1938-1946
    • /
    • 2019
  • Isomaltooligosaccharides (IMOs) have good prebiotic effects, and long IMOs (LIMOs) with a degree of polymerization (DP) of 7 or above show improved effects. However, they are not yet commercially available, and require costly enzymes and processes for production. The N-terminal region of the thermostable Thermoanaerobacter thermocopriae cycloisomaltooligosaccharide glucanotransferase (TtCITase) shows cyclic isomaltooligosaccharide (CI)-producing activity owing to a catalytic domain of glycoside hydrolase (GH) family 66 and carbohydrate-binding module (CBM) 35. In the present study, we elucidated the activity of the C-terminal region of TtCITase (TtCITase-C; Met740-Phe1,559), including a CBM35-like region and the GH family 15 domain. The domain was successfully cloned, expressed, and purified as a single protein with a molecular mass of 115 kDa. TtCITase-C exhibited optimal activity at 40℃ and pH 5.5, and retained 100% activity at pH 5.5 after 18-h incubation. TtCITase-C synthesized α-1,6 glucosyl products with over seven degrees of polymerization (DP) by an α-1,6 glucosyl transfer reaction from maltopentaose, isomaltopentaose, or commercialized maltodextrins as substrates. These results indicate that TtCITase-C could be used for the production of α-1,6 glucosyl oligosaccharides with over DP7 (LIMOs) in a more cost-effective manner, without requiring cyclodextran.

Anti-Inflammatory Effect of Flavonoids from Brugmansia arborea L. Flowers

  • Kim, Hyoung-Geun;Jang, Davin;Jung, Young Sung;Oh, Hyun-Ji;Oh, Seon Min;Lee, Yeong-Geun;Kang, Se Chan;Kim, Dae-Ok;Lee, Dae Young;Baek, Nam-In
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.163-171
    • /
    • 2020
  • Brugmansia arborea L. (Solanaceae), commonly known as "angel's trumpet," is widely grown in North America, Africa, Australia, and Asia. It has been mainly used for ornamental purposes as well as analgesic, anti-rheumatic, vulnerary, decongestant, and anti-spasmodic materials. B. arborea is also reported to show anti-cholinergic activity, for which many alkaloids were reported to be principally responsible. However, to the best of our knowledge, a phytochemical study of B. arborea flowers has not yet been performed. Four flavonol glycosides (1-4) and one dihydroflavanol (5) were for the first time isolated from B. arborea flowers in this study. The flavonoids showed significant antioxidant capacities, suppressed nitric oxide production in lipopolysaccharide (LPS)-treated RAW 264.7 cells, and reduced inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) protein production increased by LPS treatment. The contents of compounds 1-4 in n-BuOH fraction were determined to be 3.8 ± 0.9%, 2.2 ± 0.5%, 20.3 ± 1.1%, and 2.3 ± 0.4%, respectively, and that of compound 5 in EtOAc fraction was determined to be 12.7 ± 0.7%, by HPLC experiment. These results suggest that flavonol glycosides (1-4) and dihydroflavanol (5) can serve as index components of B. arborea flowers in standardizing anti-inflammatory materials.

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권3호
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

Gene Cloning, Expression, and Characterization of a $\beta$-Agarase, AgaB34, from Agarivorans albus YKW-34

  • Fu, Xiao Ting;Pan, Cheol-Ho;Lin, Hong;Kim, Sang-Moo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.257-264
    • /
    • 2009
  • A $\beta$-agarase gene, agaB34, was functionally cloned from the genomic DNA of a marine bacterium, Agarivorans albus YKW-34. The open reading frame of agaB34 consisted of 1,362 bp encoding 453 amino acids. The deduced amino acid sequence, consisting of a typical N-terminal signal peptide followed by a catalytic domain of glycoside hydrolase family 16 (GH-16) and a carbohydrate-binding module (CBM), showed 37-86% identity to those of agarases belonging to family GH-16. The recombinant enzyme (rAgaB34) with a molecular mass of 49 kDa was produced extracellularly using Escherichia coli $DH5{\alpha}$ as a host. The purified rAgaB34 was a $\beta$-agarase yielding neoagarotetraose (NA4) as the main product. It acted on neoagarohexaose to produce NA4 and neoagarobiose, but it could not further degrade NA4. The maximal activity of rAgaB34 was observed at $30^{\circ}C$ and pH 7.0. It was stable over pH 5.0-9.0 and at temperatures up to $50^{\circ}C$. Its specific activity and $k_{cat}/K_m$ value for agarose were 242 U/mg and $1.7{\times}10^6/sM$, respectively. The activity of rAgaB34 was not affected by metal ions commonly existing in seawater. It was resistant to chelating reagents (EDTA, EGTA), reducing reagents (DTT, $\beta$-mercaptoethanol), and denaturing reagents (SDS and urea). The E. coli cell harboring the pUC18-derived agarase expression vector was able to efficiently excrete agarase into the culture medium. Hence, this expression system might be used to express secretory proteins.

Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from Gayadomonas joobiniege G7

  • Lee, Yeong Rim;Jung, Subin;Chi, Won-Jae;Bae, Chang-Hwan;Jeong, Byeong-Chul;Hong, Soon-Kwang;Lee, Chang-Ro
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.284-292
    • /
    • 2018
  • A novel ${\beta}$-agarase, AgaJ5, was identified from an agar-degrading marine bacterium, Gayadomonas joobiniege G7. It belongs to the glycoside hydrolase family 86 and is composed of 805 amino acids with a 30-amino-acid signal peptide. Zymogram analysis showed that purified AgaJ5 has agarase activity. The optimum temperature and pH for AgaJ5 activity were determined to be $30^{\circ}C$ and 4.5, respectively. AgaJ5 was an acidic ${\beta}$-agarase that had strong activity at a narrow pH range of 4.5-5.5, and was a cold-adapted enzyme, retaining 40% of enzymatic activity at $10^{\circ}C$. AgaJ5 required monovalent ions such as $Na^+$ and $K^+$ for its maximum activity, but its activity was severely inhibited by several metal ions. The $K_m$ and $V_{max}$ of AgaJ5 for agarose were 8.9 mg/ml and 188.6 U/mg, respectively. Notably, thin-layer chromatography, mass spectrometry, and agarose-liquefication analyses revealed that AgaJ5 was an endo-type ${\beta}$-agarase producing neoagarohexaose as the final main product of agarose hydrolysis. Therefore, these results suggest that AgaJ5 from G. joobiniege G7 is a novel endo-type neoagarohexaose-producing ${\beta}$-agarase having specific biochemical features that may be useful for industrial applications.

Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in Panax ginseng Leaf Extract to Aglycon Protopanaxatriol by β-Glycosidases from Dictyoglomus turgidum and Pyrococcus furiosus

  • Yang, Eun-Joo;Shin, Kyung-Chul;Lee, Dae Young;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.255-261
    • /
    • 2018
  • Aglycon protopanaxatriol (APPT) has valuable pharmacological effects such as memory enhancement and tumor inhibition. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Dictyoglomus turgidum (DT-bgl) hydrolyzes the glucose residues linked to APPT, but not other glycoside residues. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Pyrococcus furiosus (PF-bgl) hydrolyzes the outer sugar at C-6 but not the inner glucose at C-6 or the glucose at C-20. Thus, the combined use of DT-bgl and PF-bgl is expected to increase the biotransformation of PPT-type ginsenosides to APPT. We optimized the ratio of PF-bgl to DT-bgl, the concentrations of substrate and enzyme, and the reaction time to increase the biotransformation of ginsenoside Re and PPT-type ginsenosides in Panax ginseng leaf extract to APPT. DT-bgl combined with PF-bgl converted 1.0 mg/ml PPT-type ginsenosides in ginseng leaf extract to 0.58 mg/ml APPT without other ginsenosides, with a molar conversion of 100%. We achieved the complete biotransformation of ginsenoside Re and PPT-type ginsenosides in ginseng leaf extract to APPT by the combined use of two ${\beta}$-glycosidases, suggesting that discarded ginseng leaves can be used as a source of the valuable ginsenoside APPT. To the best of our knowledge, this is the first quantitative production of APPT using ginsenoside Re, and we report the highest concentration and productivity of APPT from ginseng extract to date.