• Title/Summary/Keyword: Glycoside

Search Result 635, Processing Time 0.024 seconds

Inhibitory Effect of Lignans from the Rhizomes of Coptis japonica var. dissecta on Tumor Necrosis Factor-${\alpha}$ Production in Lipopolysaccharide-stimulated RAW264.7 Cells

  • Cho, Jae-Youl;Park, Ji-Soo;Yoo, Eun-Sook;Kazuko Yoshikawa;Baik, Kyong-Up;Lee, Jong-Soo;Park, Myung-Hwan
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.12-16
    • /
    • 1998
  • The inhibitory effect of 10 lignan constituents isolated from the rhizomes of Coptis japonica var. dissects on tumor necrosis factor (TNF)-${\alpha}$ production in lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW264.7 cells) has been studied. Among them, pinoresinol, woorenoside-V and lariciresinol glycoside showed significant inhibitory activities in the range from 37% to 55% at the concentration of $25{\mu}g/ml.$ The results are first report that the lignans isolated from Coptis japonica inhibit TNF- ${\alpha}$${\alpha}$

  • PDF

Chemical Constituents and Biological Activity of Kalopanacis Cortex (해동피의 화학성분 및 생리활성)

  • Lee, Eun;Choi, Moo-Young;Park, Hee-Juhn;Cha, Bae-Chun;Cho, Soon-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.2
    • /
    • pp.122-129
    • /
    • 1995
  • The study on phytochemical analysis and the biological activity of Kalopanacis Cortex was carried out in this research. As a phytochemical result, liriodendrin as a lignan glycoside was isolated and characterized. Two subfraction separated from the acidic substance of $CHCl_3$ fraction were saturated and unsaturated fatty acid, respectively. Saturated fatty acid mixture identified from GC-MS tool was as follows: palmitic acid, stearic acid, arachidic acid, heneicosanoic acid, docosanoic acid, tricosanoic acid, tetracosanoic acid, pentacosanoic acid, hexacosanoic acid and octacosanoic acid. Unsaturated fatty acid was found to be linoleic acid on the basis of spectroscopic method. An active principle of liriodendrin exhibited significant antihepatotoxic activity but failed to show a considerable antiedemic activity. In this paper, the result of writhing test on liriodendrin was also described.

  • PDF

Characterization of ginseng extracts

  • Woo, Lin-Keun;Han, Byung-Hoon;Baik, Duck-Woo;Park, Dae-Sic
    • YAKHAK HOEJI
    • /
    • v.17 no.3
    • /
    • pp.129-136
    • /
    • 1973
  • In order to establish the chemical standards for the quality control of ginsentgextract, an approach for the assay of sapogenin contents in the part of main roots and fibrous side roots was performed by combination of preparative thin layer chromotographic procedure and vanillin-$H_{2}SO_{4}$ color reaction. The contents of dammarane aglycones as funcction of dammarane glycosides in 80%-EtOH extracts were analyzed by the method from the main roots and fibrous side roots of Korean ginseng grown for 4-6 years. The differences by their grown ages in the contents of dammarane glycosides, in the ratio of panaxadiol to panaxatriol contents, and in the mounts of 80% EtOH extract were not significant in the parts of main roots and fibrous side roots of Korean gingeng. Differences due to the part for medicinal uses were highly significant in all parameters mentioned, showing following results ; in the main roots ; 80% EtOH extract, 12.7-15.7 % : the ratio of aglycone composition, 0.955-1.012 : dammarane glycoside (as diglucoside bases), 1.537-1.863 ; in fibrous isde roots ; 80% EtOH extract, 26.0-26.02% : dammarane glycoside, 4.767-5.641 : the ratio, 1.456-1.50.

  • PDF

Inhibitory Effect on TNF-${\alpha}$-Induced IL-8 Production in the HT29 Cell of Constituents from the Leaf and Stem of Weigela subsessilis

  • Thuong Phuong Thien;Jin WenYi;Lee JongPill;Seong RackSeon;Lee Young-Mi;Seong YeonHee;Song KyungSik;Bae KiHwan
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1135-1141
    • /
    • 2005
  • Twelve compounds were isolated from the MeOH extract of the leaf and stem of the Korean endemic plant Weigela subsessilis L. H. Bailey. Their chemical structures were elucidated on the basis of physicochemical and spectroscopic data and by comparison with those of published literatures. These compounds were identified as three sterols, ${\beta}$-sitosterol acetate (2), ${\beta}$-sitosterol (3), daucosterol (11), eight triterpenoids, squalene (1), ursolic acid (4), ilekudinol A (5), corosolic acid (6), ilekudinol B (7), esculentic acid (8), pomolic acid (9), asiatic acid (10), and one iridoid glycoside, alboside I (12). This is the first report pertaining to the isolation of these compounds from Weigela subsessilis L. H. Bailey. In addition, three compounds 7, 9, and 12 were found to display a strong inhibitory effect on the production of IL-8 in the HT29 cells stimulated by TNF-${\alpha}$.

Purification and Characterization of a Thermostable Xylanase from Fomitopsis pinicola

  • Shin, Keum;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1415-1423
    • /
    • 2010
  • An extracellular xylanase was purified to homogeneity by sequential chromatography of Fomitopsis pinicola culture supernatants on a DEAE-Sepharose column, a gel filtration column, and then on a MonoQ column with fast protein liquid chromatography. The relative molecular mass of the F. pinicola xylanase was determined to be 58 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by size-exclusion chromatography, indicating that the enzyme is a monomer. The hydrolytic activity of the xylanase had a pH optimum of 4.5 and a temperature optimum of $70^{\circ}C$. The enzyme showed a $t_{1/2}$ value of 33 h at $70^{\circ}C$ and catalytic efficiency ($k_{cat}=77.4\;s^{-1}$, $k_{cat}/K_m$=22.7 mg/ml/s) for oatspelt xylan. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase (GH) family 10, indicating that the F. pinicola xylanase is a member of GH family 10.

Purification and Characterization of a Thermostable Cellobiohydrolase from Fomitopsis pinicola

  • Shin, Keum;Kim, Yoon-Hee;Jeya, Marimuthu;Lee, Jung-Kul;Kim, Yeong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1681-1688
    • /
    • 2010
  • A screening for cellobiohydrolase (CBH) activity was performed and Fomitopsis pinicola KMJ812 was selected for further characterization as it produced a high level of CBH activity. An extracellular CBH was purified to homogeneity by sequential chromatography of F. pinicola culture supernatants. The molecular mass of the F. pinicola CBH was determined to be 64 kDa by SDS-PAGE and by size-exclusion chromatography, indicating that the enzyme is a monomer. The F. pinicola CBH showed a $t_{1/2}$ value of 42 h at $70^{\circ}C$ and catalytic efficiency of $15.8mM^{-1}s^{-1}(k_{cat}/K_m)$ for p-nitrophenyl-${\beta}$-D-cellobioside, one of the highest levels seen for CBH-producing microorganisms. Its internal amino acid sequences showed a significant homology with hydrolases from glycoside hydrolase family 7. Although CBHs have been purified and characterized from other sources, the F. pinicola CBH is distinguished from other CBHs by its high catalytic efficiency and thermostability.

Saci_1816: A Trehalase that Catalyzes Trehalose Degradation in the Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

  • Lee, Junho;Lee, Areum;Moon, Keumok;Choi, Kyoung-Hwa;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.909-916
    • /
    • 2018
  • Previously, a cytosolic trehalase (TreH) from the hyperthermophilic archaeon Sulfolobus acidocaldarius was reported; however, the gene responsible for the trehalase activity was not identified. Two genes, saci_1816 and saci_1250, that encode the glycoside hydrolase family 15 type glucoamylase-like proteins in S. acidocaldarius were targeted and expressed in Escherichia coli, and their abilities to hydrolyze trehalose were examined. Recombinant Saci_1816 hydrolyzed trehalose exclusively without any help from a cofactor. The mass spectrometric analysis of partially purified native TreH also confirmed that Saci_1816 was involved in proteins exhibiting trehalase activity. Optimal trehalose hydrolysis activity of the recombinant Saci_1816 was observed at pH 4.0 and $60^{\circ}C$. The pH dependence of the recombinant enzyme was similar to that of the native enzyme, but its optimal temperature was $20-25^{\circ}C$ lower, and its thermostability was also slightly reduced. From the biochemical and structural results, Saci_1816 was identified as a trehalase responsible for trehalose degradation in S. acidocaldarius. Identification of the treH gene confirms that the degradation of trehalose in Sulfolobus species occurs via the TreH pathway.

Characterization of a Glycoside Hydrolase Family 50 Thermostable β-agarase AgrA from Marine Bacteria Agarivorans sp. AG17

  • Nikapitiya, Chamilani;Oh, Chul-Hong;Lee, Young-Deuk;Lee, Suk-Kyoung;Whang, Il-Son;Lee, Je-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.36-48
    • /
    • 2010
  • An agar-degrading Agarivorans sp. AG17 strain was isolated from the red seaweed Grateloupia filicina collected from Jeju Island. A beta-agarase gene from Agarivorans sp. AG17 was cloned and designated as agrA. agrA has a 2,985 bp coding region encoding 995 amino acids and was classified into the glycoside hydrolase family (GHF)-50. Predicted molecular mass of the mature protein was 105 kDa. His-tagged agrA was overexpressed in Escherichia coli and purified as a fusion protein. The enzyme showed 158.8 unit/mg specific activity (optimum temperature at $65^{\circ}C$ and pH 5.5 in acetate buffer) with unique biochemical properties (high thermal and pH stabilities). Enzyme produced neoagarohexaose, neoagarotetraose and neoagarobiose by degrading agar, and hydrolyzed neoagaro-oligosaccharides were biologically active. Hence the purified enzyme has potential for use in industrial applications such as the development of cosmetics and pharmaceuticals.

Gamnamoside, a Phenylpropanoid Glycoside from Persimmon Leaves (Diospyros kaki) with an Inhibitory Effect against an Alcohol Metabolizing Enzyme

  • Varughese, Titto;Rahaman, Mozahidur;Kim, No-Soo;Cho, Soon-Chang;Moon, Surk-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1035-1038
    • /
    • 2009
  • Phytochemical investigation of the methanolic extract of Diospyros kaki leaves led to the isolation of osmanthuside H (1) and a new phenol glycoside, named gamnamoside [4-(3-hydroxypropyl)-2-methoxyphenol $\beta$-D-apiofuranosyl( 1 $\rightarrow$ 6)$\beta$-D-glucopyranoside] (2) along with (-) catechin (3) through a series of reversed phase column chromatography and preparative C18 HPLC. The structures of the isolates were determined by spectroscopic methods including IR, UV, HRTOFMS, and 2D NMR. Compounds 1, 2, and 3, showed good inhibitory activities ($IC_{50}$) of 175.4, 94.4, and 126.6 ${\mu}g/mL$ respectively, whereas a reversible ADH inhibitor, 4-methylpyrazole, showed the $IC_{50}$ of 326.6 ${\mu}g/mL$ against alcohol dehydrogenase (ADH).

Ginsenoside $Rg_5$, A Genuine Dammarane Glycoside from Korean Red Ginseng

  • Kim, Shin-Il;Park, Jeong-Hill;Ryu, Jae-Ha;Park, Jong-Dae;Lee, You-Hui;Park, Jae-Hyun;Kim, Tae-Hee;Kim, Jong-Moon;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.551-553
    • /
    • 1996
  • A genuine dammarane glycoside, named ginsenoside $Rg_{5}$, has been isolated by repeated column chromatography and preparative HPLC from the MeOH extract of Korean red ginseng (Panax ginseng C.A. Meyer). The chemical structure of ginsenoside$ Rg_{5}$ was determined as $3-O-[{\beta}-D-glucopyranosyl (1{\rightarrow}2)-{\beta}-D-glucopyranosyl]$ dammar-20(22), $24-diene-3{\beta},12{\beta}-diol$ by spectral and chemical methods. The stereostructure of a double bond at C-20(22) of ginsenoside $Rg_{5}$ was characterized as (E) from the chemical shift of C-21 in the $^{13}C-NMR $and a NOESY experiment in the $^{1}H-NMR$.

  • PDF