• Title/Summary/Keyword: Glycosaminoglycan expression

Search Result 27, Processing Time 0.028 seconds

Immunomodulatory activity of acharan sulfate isolated from Achatina fulica

  • Kim, Hyeon-Seon;Lee, Jae-Kwon;Yang, In-Ho;Lee, Young-Ran;Shin, Hyun-Jeong;Park, Eun-Ju;Park, Hyung-Seok;Kim, Yeong-Shik;Lee, Chong-Kil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.307.2-308
    • /
    • 2002
  • Acharan sulfate. a new glycosaminoglycan(GAG) isolated from the giant African snail Achatina fulica. was shown to have antitumor activity in vivo. To elucidate the mechanisms for the antitumor activity. we examined its impact on professional antigen presenting cells such as macrophages and dendritic cells (DCs). Acharan sulfate stimulated cytokine production (TNF-a and IL -1b). nitric oxide release. and morphological changes in a dose dependent manner on a macrophage cell Line Raw 264.7 cells. The differentiation-inducing activity of acharan sulfate was examined on immature DCs. Immature DCs were generated from mouse bone marrow (BM) cells by culturing with GM-CSF and IL-4, and then stimulated with acharan sulfate. The resultant DCs were then examined for funcional and phenotypic properties. It was found that acharan sulfate could induce functional maturation of immature DCs as determined by increased allogenic mixed lymphocyte reaction (MLR) and IL-12 production. Phenotypic. analysis for the expression of class II MHC molecules and major co-stimulatory molecules such as B7-1, B7-2 and CD40 also confirmed that acharan sulfate could induce maturation of immature DCs. These results suggest that that the antitumor activity of acharan sulfate is at least in part due to activation adn induction of differentiation of professinal antigen presenting cells. (omitted)

  • PDF

Chondrogenic Differentiation of Porcine Skin-Derived Stem Cells with Different Characteristics of Spontaneous Adipocyte Formation

  • Bae, Hyo-Kyung;Jung, Bae-Dong;Lee, Seunghyung;Park, Choon-Keun;Yang, Boo-Keun;Cheong, Hee-Tae
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2017
  • The purpose of this study is to confirm whether spontaneous adipocyte generation during chondrogenic induction culture affects the chondrogenic differentiation of porcine skin-derived stem cells (pSSCs). For this purpose, chondrogenic differentiation characteristics and specific marker gene expression were analyzed using cell lines showing different characteristics of spontaneous adipocyte formation. Of the four different lines of pSSCs, the pSSCs-IV line showed higher Oil red O (ORO) and glycosaminoglycan (GAG) extraction levels. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the levels of adipogenic markers peroxisome proliferator-activated receptor gamma 2 ($PPAR{\gamma}2$) and adipocyte Protein 2 (aP2) mRNAs were significantly higher in pSSCs-IV than those of the other pSSC lines (P<0.05). Among three chondrogenic markers, collagen type II (Col II) and sex determining region Y-box (Sox9) mRNAs were strongly expressed in pSSCs-IV (P<0.05), but not in aggrecan (Agg), which was significantly higher in pSSCs-II (P<0.05). These results demonstrate that the spontaneous adipocyte generation during chondrogenic differentiation has a positive effect on the chondrogenesis of pSSCs. More research is needed on the correlation between adipocyte generation and cartilage formation.

$PKC{\eta}$ Regulates the $TGF{\beta}3$-induced Chondrogenic Differentiation of Human Mesenchymal Stem Cell

  • Ku, Bo Mi;Yune, Young Phil;Lee, Eun Shin;Hah, Young-Sool;Park, Jae Yong;Jeong, Joo Yeon;Lee, Dong Hoon;Cho, Gyeong Jae;Choi, Wan Sung;Kang, Sang Soo
    • Development and Reproduction
    • /
    • v.17 no.4
    • /
    • pp.299-309
    • /
    • 2013
  • Transforming growth factor (TGF) family is well known to induce the chondrogenic differentiation of mesenchymal stem cells (MSC). However, the precise signal transduction pathways and underlying factors are not well known. Thus the present study aims to evaluate the possible role of C2 domain in the chondrogenic differentiation of human mesenchymal stem cells. To this end, 145 C2 domains in the adenovirus were individually transfected to hMSC, and morphological changes were examined. Among 145 C2 domains, C2 domain of protein kinase C eta ($PKC{\eta}$) was selected as a possible chondrogenic differentiation factor for hMSC. To confirm this possibility, we treated $TGF{\beta}3$, a well known chondrogenic differentiation factor of hMSC, and examined the increased-expression of glycosaminoglycan (GAG), collagen type II (COL II) as well as $PKC{\eta}$ using PT-PCR, immunocytochemistry and Western blot analysis. To further evaluation of C2 domain of $PKC{\eta}$, we examined morphological changes, expressions of GAG and COL II after transfection of $PKC{\eta}$-C2 domain in hMSC. Overexpression of $PKC{\eta}$-C2 domain induced morphological change and increased GAG and COL II expressions. The present results demonstrate that $PKC{\eta}$ involves in the TGF-${\beta}3$-induced chondrogenic differentiation of hMSC, and C2 domain of $PKC{\eta}$ has important role in this process.

Effects of Sargassumpallidum on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice (해조가 2,4,6-trinitrobenzene-sulfonic acid로 유발된 염증성 장질환 동물모델에 미치는 영향)

  • Lee, Sang-Wook;Ryu, Bong-Ha;Park, Jae-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.224-241
    • /
    • 2010
  • Objectives : The aim of the current study was to investigate the effects of Sargassum (Sargassum pallidum (TURN.) C. AG.; SP) on the experimental colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. Methods : ICR mice were divided into 7 groups (NOR, CON, $SS50\times5$, $SP20\times3$, $SP50\times3$, $SP20\times5$, $SP50\times5$). TNBS processing was intrarectally applied to all experimental groups on the 3rd experiment day, except the normal group (NOR). For investigating the prophylactic effect, SP at doses of 20 mg/kg ($SP20\times5$) and 50 mg/kg ($SP50\times5$) were orally administered for 5 days. The SP at doses of 20 mg/kg ($SP20\times3$) and 50 mg/kg ($SP50\times3$) were orally administered for 3 days after the colitis induction in order to check the effect of treatment. As a positive control group, sulfasalazine 50 mg/kg ($SS50\times5$) was administrated. Macroscopic findings of epithelial tissue on mice were measured by colon length and macroscopic score. Histologic findings were also checked by crypt cell, epithelial cell, inflammatory cell and edema of submucosa. We measured the ability of SP to inhibit lipid peroxidation and myeloperoxidase activity. We also measured levels of the inflammatory markers, interleukin (IL)-$1\beta$ and cyclooxygenase-2 (COX-2), its transcription factor activation, phospho-NF-${\kappa}B$ (pp65), in the colon by enzyme-linked immunosorbent assay and immunoblot analysis. We measured activation of fecal bacterial enzyme, $\beta$-glucuronidase and degradation activation of fecal glycosaminoglycan (GAG), and hyaluronic acid. Results : Oral administration of SP on mice inhibited TNBS-induced colon shortening and myeloperoxidase activity in the colon of mice as well as IL-$1\beta$ and COX-2 expression. SP also inhibited TNBS-induced lipid peroxidation and pp65 activation in the colon of mice. SP inhibited $\beta$-glucuronidase activation and fecal hyaluronic acid degradation activation as well. Conclusions : SP could be a possible herbal candidate and preventive prebiotic agent for treating inflammatory bowel disease (IBD). Further experiments to differentiate effects of SP on IBD, such as other solutions and extracting times, might be promising.

The Effects of TWEAK, Fn14, and TGF-$\beta1$ on Degeneration of Human Intervertebral Disc

  • Huh, Hoon;Lee, Yong-Jik;Kim, Jung-Hee;Kong, Min-Ho;Song, Kwan-Young;Choi, Gun
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • Objective: The purpose of this study is to explain the effect and reciprocal action among tumor necrosis factor (TNF) like weak inducer of apoptosis (TWEAK), fibroblast growth factor-inducible 14 (Fn14), and transforming growth factor-$\beta1$ (TGF-$\beta1$) on degeneration of human intervertebral disc (IVD). Methods: Human intervertebral disc tissues and cells were cultured with Dulbecco's Modified Eagle's Medium/Nutrient F-12 Ham (DMEM/F-12) media in $37^{\circ}C$, 5% $CO_2$ incubator. When IVD tissues were cultured with TWEAK, Fn14 that is an antagonistic receptor for TWEAK and TGF-$\beta1$, the level of sulfated glycosaminoglycan (sGAG) was estimated by dimethyl methyleneblue (DMMB) assay and sex determining region Y (SRY)-box 9 (Sox9) and versican messenger ribonucleic acid (mRNA) levels were estimated by reverse transcriptase polymerase chain reaction (RT-PCR). Results: When human IVD tissue was cultured for nine days, the sGAG content was elevated in proportion to culture duration. The sGAG was decreased significantly by TWEAK 100 ng/mL, however, Fn14 500 ng/mL did not change the sGAG production of IVD tissue. The Fn14 increased versican and Sox9 mRNA levels decreased with TWEAK in IVD tissue TGF-$\beta1$ 20 ng/mL elevated the sGAG concentration 40% more than control. The sGAG amount decreased with TWEAK was increased with Fn14 or TGF-$\beta1$ but the result was insignificant statistically. TGF-$\beta1$ increased the Sox9 mRNA expression to 180% compared to control group in IVD tissue. Sox9 and versican mRNA levels decreased by TWEAK were increased with TGF-$\beta1$ in primary cultured IVD cells, however, Fn14 did not show increasing effect on Sox9 and versican. Conclusion: This study suggests that TWEAK would act a role in intervertebral disc degeneration through decreasing sGAG and the mRNA level of versican and Sox9.

3-Acetyl-11-Keto-Beta-Boswellic Acid from Boswellia serrata Attenuates Monosodium Iodoacetate-induced Osteoarthritis by Chondroprotective and Anti-inflammatory Effects (Monosodium iodoacetate로 유발된 골관절염 쥐에 유향(乳香) 성분 3-Acetyl-11-Keto-Beta-Boswellic Acid의 연골보호 및 항염증 효과)

  • Kim, Min Ju;Shin, Mi-Rae;Choi, Hak Joo;Park, Hae-Jin;Choi, Hwang-Yong;Kim, Hwa-Young;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.27-35
    • /
    • 2022
  • Objectives : 3-Acetyl-11-keto-𝛽-boswellic acid (AKBA) is a major active compound in Boswellia serrata. We investigated the arthritic changes following AKBA administration in monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods : All rats were randomly divided into five groups: Normal, Control, INDO (indomethacin 2 mg/kg treated), AKBA30 (AKBA 30 mg/kg treated), and AKBA60 (AKBA 60 mg/kg treated); drugs were given 2 weeks before MIA injection. For all groups except the normal group, 50 µL of sterile saline with MIA (80 mg/mL) was injected into the right knee joint 2 weeks after drug administration. The drug administration was continued for 4 weeks from 1 week after osteoarthritis induction. The histomorphological changes of knee joint cartilage were observed by H&E staining. Also, the levels of glycosaminoglycan (GAG), cartilage oligomeric matrix protein (COMP), 5-lipoxygenase (5-LOX), 5-LOX-activating protein (FLAP), and leukotriene B4 (LTB4) in the knee joint were determined by the ELISA kits. The expressions of mitogen-activated protein kinases (MAPKs), inflammatory cytokines, and matrix metalloproteinases (MMPs) in knee joint were detected by Western blot. Results : Data show that levels of 5-LOX, FLAP, LTB4, and COMP were downregulated significantly in the AKBA treated groups when compared to those in the Control group. On the other hand, GAG levels were significantly elevated. As a result of Western blot, the AKBA-treated groups significantly inhibited phosphorylation of MAPKs. In addition, significant downregulation of the expression of inflammatory cytokines and MMPs was found in the AKBA-treated groups. Conclusion : Our findings suggest that administration of AKBA could exert better chondroprotective and anti-inflammatory effects for MIA-induced osteoarthritis rats.

COVID-19 in a 16-Year-Old Adolescent With Mucopolysaccharidosis Type II: Case Report and Review of Literature

  • Park, So Yun;Kim, Heung Sik;Chu, Mi Ae;Chung, Myeong-Hee;Kang, Seokjin
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) in patients with underlying diseases, is associated with high infection and mortality rates, which may result in acute respiratory distress syndrome and death. Mucopolysaccharidosis (MPS) type II is a progressive metabolic disorder that stems from cellular accumulation of the glycosaminoglycans, heparan, and dermatan sulfate. Upper and lower airway obstruction and restrictive pulmonary diseases are common complaints of patients with MPS, and respiratory infections of bacterial or viral origin could result in fatal outcomes. We report a case of COVID-19 in a 16-year-old adolescent with MPS type II, who had been treated with idursulfase since 5 years of age. Prior to infection, the patient's clinical history included developmental delays, abdominal distension, snoring, and facial dysmorphism. His primary complaints at the time of admission included rhinorrhea, cough, and sputum without fever or increased oxygen demand. His heart rate, respiratory rate, and oxygen saturation were within the normal biological reference intervals, and chest radiography revealed no signs of pneumonia. Consequently, supportive therapy and quarantine were recommended. The patient experienced an uneventful course of COVID-19 despite underlying MPS type II, which may be the result of an unfavorable host cell environment and changes in expression patterns of proteins involved in interactions with viral proteins. Moreover, elevated serum heparan sulfate in patients with MPS may compete with cell surface heparan sulfate, which is essential for successful interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the host cell surface, thereby protecting against intracellular penetration by SARS-CoV-2.