• Title/Summary/Keyword: Glycolic Acid

Search Result 164, Processing Time 0.023 seconds

Clinical comparison of resorbable and nonresorbable Barrier in guided tissue regeneration of human intrabony defects (흡수성 차폐막을 이용한 조직유도재생술의 임상적 효과)

  • Hur, Yin-Shik;Kwon, Young-Hyuk;Lee, Man-Sup;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.1
    • /
    • pp.193-207
    • /
    • 1999
  • The purpose of this study was to compare the clinical results of guided tissue regeneration(GTR) using a resorbable barrier manufactured from an copolymer of polylactic acid (PLA) and polylaetic-glycolic acid(PLGA) with those of nonresorbable ePTFE barrier. Thirty two patients(25 to 59 years old) with one radiographically evident intrabony lesion of probing depth ${\geq}$6mm participated in a 6-month controlled clinical trial. The subjects were randomly divided into three independent groups. The first group(n=8) received a ePTFE barrier. The second group (n=12) received a resorbable PLA/PLGA barrier. The third group (n=12) received a resorbable PLA/PLGA barrier combined with an alloplastic bone graft. Plaque index (PI), gingival index(GI), probing depth(PD), gingival recession, clinical attachment level(CAL), and tooth mobility were recorded prior to surgery and at 3, 6 months postsurgery, Statistical tests used to analyze these data included independent t-test, paired t-test, one-way ANOVA. The results were as follows : 1. Probing depth was significantly reduced in all groups at 3, 6 months postsurgery and there were not significant differences between groups. 2. Clinical attachment level was significantly increased in all groups at 3, 6 months postsurgery and there were not significant differences between groups. 3. There were not significant differences in probing depth, clinical attachment level, gingival recession, tooth mobility between second group (PLA/PLGA barrier) and third group (PLA/PLGA barrier combined with alloplastic bone graft) 4. Tooth mobility was not significantly increased in all groups at 3, 6 months postsurgery and there were not significant differences between groups. In conclusion, PLA/PLGA resorbable barrier has similar clinical potential to eP'IFE barrier in GTR procedure of intrabony pockets under the present protocol.

  • PDF

Study on the characteristics and biodegradable of synthetic PLGA membrane from lactic acid and glycolic acid (젖산 및 글리콜산에서 합성된 PLGA 멤브레인의 특성과 생분해성에 관한 연구)

  • Xie, Yuying;Park, Jong-Soon;Kang, Soon-Kook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2958-2965
    • /
    • 2015
  • The PLGA(Poly lactide-co-glycolide) Copolymer have been actively applied to the medical implant material as biomaterials. PLGA membrane was able to alveoloplasty with osteotomy for favorable degradation characteristics and possibilities for sustained drug delivery. In this study, PLGA membrane was prepared using phase inversion method, and examined to optical method analysis(NMR, IR), mechanical property measurement (tearing strength) and thermal characteristic analysis(DSC). In addition, the biodegradation characteristics of the PLGA membrane filled with a PBS(Phosphate Buffered Solution) of the water bath ($60^{\circ}C$) according to the degree of surface degradation in the degradation time, the pH change of the solution and change of the mass of the membrane were measured.

Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying (전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅)

  • Cho, Seong-Bae;Park, Chul-Ho;Park, Kwi-Deok;Chung, Dong-Jun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.620-624
    • /
    • 2009
  • Biomedical metal implants have been used clinically for replacement, restoration, or improvement of injury bodies based on high mechanical properties, but it has some risks such as the inflammatory, late thrombosis, or restenosis due to the low biocompatibility and toxicity. In various techniques of surface treatment developed to preserve these drawbacks, this study examined the electrospray coating technology with biodegradable poly (lactic-co-glycoic acid) (PLGA) on metal surface. Based on fundamental examination of electrospraying and solution parameters, the surface morphology of coated film was closely related to the boiling point of solvent, in-flight distance, and droplet size. The thickness of polymer film was linearly proportional to the emerged volume. This result exhibits that the polymeric droplets were continuously deposited on the polymer film. Therefore, the electrospray coating technology might be applied into the fabrication of single/multi-layered polymer film in nano-/micro-thickness and the control of the topology for biomedical metal implants including stents.

Colorimetric Based Analysis Using Clustered Superparamagnetic Iron Oxide Nanoparticles for Glucose Detection (클러스터 초상자성체 산화철 나노입자를 이용한 색채학적 해석 기반 당 측정)

  • Choi, Wonseok;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.228-234
    • /
    • 2020
  • Superparamagnetic iron oxide nanoparticles (SPIONs) are approved by the Food and Drug Administration (FDA) in the United States. SPIONs are used in magnetic resonance imaging (MRI) as contrast agents and targeted delivery in nanomedicine using external magnet sources. SPIONs act as an artificial peroxidase (i.e., nanozyme), and these reactions were highly stable in various pH conditions and temperatures. In this study, we report a nanozyme ability of the clustered SPIONs (CSPIONs) synthesized by the oil-in-water (O/W) method and coated with biocompatible poly(lactic-co-glycolic acid) (PLGA). We hypothesize that the CSPIONs can have high sensitivity toward H2O2 derived from the reaction between a fixed amount of glucose and glucose oxidase (GOX). As a result, CSPIONs oxidized a 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) commonly used as a substrate for hydrogen peroxidase in the presence of H2O2, leading to a change in the color of the substrate. We also utilized a colorimetric assay at 417 nm using various glucose concentrations from 5 mM to 1.25 μM to validate β-D-glucose detection. This study demonstrated that the absorbance value increases along with increasing the glucose level. The results were highly repeated at concentrations below 5 mM (all standard deviations < 0.03). Moreover, the sensitivity and limit of detection were 1.50 and 5.44 μM, respectively, in which CSPIONs are more responsive to glucose than SPIONs. In conclusion, this study suggests that CSPIONs have the potential to be used for glucose detection in diabetic patients using a physiological fluid such as ocular, saliva, and urine.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF

Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody

  • Sang-Hyun Kim;Ji-Hyun Park;Sun-Jae Lee;Hee-Sung Lee;Jae-Kyung Jung;Young-Ran Lee;Hyun-Il Cho;Jeong-Ki Kim;Kyungjae Kim;Chan-Su Park;Chong-Kil Lee
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.42.1-42.20
    • /
    • 2022
  • Vaccination with tumor peptide epitopes associated with MHC class I molecules is an attractive approach directed at inducing tumor-specific CTLs. However, challenges remain in improving the therapeutic efficacy of peptide epitope vaccines, including the low immunogenicity of peptide epitopes and insufficient stimulation of innate immune components in vivo. To overcome this, we aimed to develop and test an innovative strategy that elicits potent CTL responses against tumor epitopes. The essential feature of this strategy is vaccination using tumor epitope-loaded nanoparticles (NPs) in combination with polyinosinic-polycytidylic acid (poly-IC) and anti-PD1 mAb. Carboxylated NPs were prepared using poly(lactic-co-glycolic acid) and poly(ethylene/maleic anhydride), covalently conjugated with anti-H-2Kb mAbs, and then attached to H-2Kb molecules isolated from the tumor mass (H-2b). Native peptides associated with the H-2Kb molecules of H-2Kb-attached NPs were exchanged with tumor peptide epitopes. Tumor peptide epitope-loaded NPs efficiently induced tumor-specific CTLs when used to immunize tumor-bearing mice as well as normal mice. This activity of the NPs significantly was increased when co-administered with poly-IC. Accordingly, the NPs exerted significant anti-tumor effects in mice implanted with EG7-OVA thymoma or B16-F10 melanoma, and the anti-tumor activity of the NPs was significantly increased when applied in combination with poly-IC. The most potent anti-tumor activity was observed when the NPs were co-administered with both poly-IC and anti-PD1 mAb. Immunization with tumor epitope-loaded NPs in combination with poly-IC and anti-PD1 mAb in tumor-bearing mice can be a powerful means to induce tumor-specific CTLs with therapeutic anti-tumor activity.

Targeting HSP90 Gene Expression with 17-DMAG Nanoparticles in Breast Cancer Cells

  • Mellatyar, Hassan;Talaei, Sona;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2453-2457
    • /
    • 2016
  • Background: Dysregulation of HSP90 gene expression is known to take place in breast cancer. Here we used D,L-lactic-co-glycolic acid-polyethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG to inhibit the expression of HSP90 gene in the T47D breast cancer cell line. The purpose was to determine whether nanoencapsulating 17DMAG improves the anti-cancer effects as compared to free 17DMAG. Materials and Methods: The T47D breast cancer cell line was grown in RPMI 1640 supplemented with 10% FBS. Encapsulation of 17DMAG was conducted through a double emulsion method and properties of copolymers were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity was by MTT assay. After treatment of T47D cells with a given amount of drug, RNA was extracted and cDNA was synthesized. In order to assess HSP90 gene expression, real-time PCR was performed. Results: Taking into account drug load, IC50 was significant decreased in nanocapsulated 17DMAG in comparison with free 17DMAG. This finding was associated with decrease of HSP90 gene expression. Conclusions: PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of HSP90 expression, at the saesm time exerting more potent cytotoxic effects. Therefore, PLGA-PEG could be a superior carrier for this type of hydrophobic agent.

Suspension culture of anchorage-dependent cells in serum-free medium with biodegradable polymer nanospheres

  • Ryu, Ju-Hee;Choi, Cha-Yong;Kim, Byung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.171-173
    • /
    • 2003
  • Suspension culture in serum-free medium is important for the efficient large-scale culture of anchorage-dependent cells that are utilized to produce therapeutic recombinant protein(e.g., insulin, antibody, vaccine) and virus vector for therapeutic gene transfer. We developed a novel method for the suspension culture of anchorage-dependent animal cells in serum-free medium using biodegradable polymer nanospheres in this study. Poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres (433nm in average diameter) were used to the culture of human embryonic kidney 293 cells in serum-free medium in stirred suspension bioreactors. The use of PLGA nanospheres promoted the aggregate formation and cell growth (3.8-fold versus 1.8-fold growth), compared to culture without nanospheres. Adaptation of the anchorage-dependent cells to suspension culture or serum-free medium is time-consuming and costly. In contrast, the culture method developed in our study does not require the adaptation process. This method may be useful for the large-scale suspension culture of various types of anchorage-dependent animal cells in serum-free medium.

  • PDF

Enhancement of Antigen-specific Antibody and $CD8^+$ T Cell Responses by Codelivery of IL-12-encapsulated Microspheres in Protein and Peptide Vaccination

  • Park, Su-Hyung;Chang, Jun;Yang, Se-Hwan;Kim, Hye-Ju;Kwak, Hyun-Hee;Kim, Byong-Moon;Lee, Sung-Hee;Sung, Young-Chul
    • IMMUNE NETWORK
    • /
    • v.7 no.4
    • /
    • pp.186-196
    • /
    • 2007
  • Background: Although IL-12 has been widely accepted to playa central role in the control of pathogen infection, the use of recombinant IL-12 (rIL-12) as a vaccine adjuvant has been known to be ineffective because of its rapid clearance in the body. Methods: To investigate the effect of sustained release of IL-12 in vivo in the peptide and protein vaccination models, rIL-12 was encapsulated into poly ($A_{DL}$-lactic-co-glycolic acid) (PLGA). Results: We found that codelivery of IL-12-encapsulated microspheres (IL-12EM) could dramatically increase not only antibody responses, but also antigen-specific $CD4^+\;and\;CD8^+$ T cell responses. Enhanced immune responses were shown to be correlated with protective immunity against influenza and respiratory syncytial virus (RSV) virus challenge. Interestingly, the enhancement of $CD8^+$ T cell response was not detectable when $CD4^+$ T cell knockout mice were subjected to vaccination, indicating that the enhancement of the $CD8^+$ T cell response by IL-12EM is dependent on $CD4^+$ T cell "help". Conclusion: Thus, IL-12EM could be applied as an adjuvant of protein and peptide vaccines to enhance protective immunity against virus infection.

Fabrication of 3D PCL/PLGA/TCP Bio-scaffold using Multi-head Deposition System and Design of Experiment (다축 적층 시스템과 실험 계획법을 이용한 3차원 PCL/PLGA/ICP 바이오 인 공지지체 제작)

  • Kim, Jong-Young;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Shin-Yoon;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.146-154
    • /
    • 2009
  • In recent tissue engineering field, it is being reported that the fabrication of 3D scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various solid free-form fabrication technologies are being applied. The solid free-form fabrication technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer manner. In this research, we developed a multi-head deposition system (MHDS) and used design of experiment (DOE) to fabricate 3D scaffold having an optimized internal/external shape, Through the organization of experimental approach using DOE, the fabrication process of scaffold, which is composed of blended poly-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and tricalcium phosphate (TCP), is established to get uniform line width, line height and porosity efficiently Moreover, the feasibility of application to the tissue engineering of MHDS is demonstrated by human bone marrow stromal cells (hBMSCs) proliferation test.