DOI QR코드

DOI QR Code

Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody

  • Sang-Hyun Kim (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Ji-Hyun Park (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Sun-Jae Lee (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Hee-Sung Lee (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Jae-Kyung Jung (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Young-Ran Lee (Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology) ;
  • Hyun-Il Cho (Research and Development Division, ViGenCell Inc.) ;
  • Jeong-Ki Kim (Department of Pharmacy, Korea University College of Pharmacy) ;
  • Kyungjae Kim (Department of Pharmacy, College of Pharmacy, Sahmyook University) ;
  • Chan-Su Park (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University) ;
  • Chong-Kil Lee (Department of Pharmaceutics, College of Pharmacy, Chungbuk National University)
  • Received : 2022.10.05
  • Accepted : 2022.10.25
  • Published : 2022.10.31

Abstract

Vaccination with tumor peptide epitopes associated with MHC class I molecules is an attractive approach directed at inducing tumor-specific CTLs. However, challenges remain in improving the therapeutic efficacy of peptide epitope vaccines, including the low immunogenicity of peptide epitopes and insufficient stimulation of innate immune components in vivo. To overcome this, we aimed to develop and test an innovative strategy that elicits potent CTL responses against tumor epitopes. The essential feature of this strategy is vaccination using tumor epitope-loaded nanoparticles (NPs) in combination with polyinosinic-polycytidylic acid (poly-IC) and anti-PD1 mAb. Carboxylated NPs were prepared using poly(lactic-co-glycolic acid) and poly(ethylene/maleic anhydride), covalently conjugated with anti-H-2Kb mAbs, and then attached to H-2Kb molecules isolated from the tumor mass (H-2b). Native peptides associated with the H-2Kb molecules of H-2Kb-attached NPs were exchanged with tumor peptide epitopes. Tumor peptide epitope-loaded NPs efficiently induced tumor-specific CTLs when used to immunize tumor-bearing mice as well as normal mice. This activity of the NPs significantly was increased when co-administered with poly-IC. Accordingly, the NPs exerted significant anti-tumor effects in mice implanted with EG7-OVA thymoma or B16-F10 melanoma, and the anti-tumor activity of the NPs was significantly increased when applied in combination with poly-IC. The most potent anti-tumor activity was observed when the NPs were co-administered with both poly-IC and anti-PD1 mAb. Immunization with tumor epitope-loaded NPs in combination with poly-IC and anti-PD1 mAb in tumor-bearing mice can be a powerful means to induce tumor-specific CTLs with therapeutic anti-tumor activity.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020R1A2C1009484, MRC-2017R1A5A2015541). The authors would like to thank Jonathan Yewdell, M.D., Ph.D., Cellular Biology Section Laboratory of Viral Diseases NIAID, NIH, MD, USA, for his critical and productive comments.

References

  1. Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev 2020;120:3210-3229. 
  2. Chen Q, Jia G, Zhao X, Bao Y, Zhang Y, Ozkan C, Minev B, Ma W. Novel survivin peptides screened with computer algorithm induce cytotoxic T lymphocytes with higher cytotoxic efficiency to cancer cells. Front Mol Biosci 2020;7:570003. 
  3. Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent advances in targeting CD8 T-cell immunity for more effective cancer immunotherapy. Front Immunol 2018;9:14. 
  4. Galloway SA, Dolton G, Attaf M, Wall A, Fuller A, Rius C, Bianchi V, Theaker S, Lloyd A, Caillaud ME, et al. Peptide super-agonist enhances T-cell responses to melanoma. Front Immunol 2019;10:319. 
  5. Trac NT, Chung EJ. Peptide-based targeting of immunosuppressive cells in cancer. Bioact Mater 2020;5:92-101. 
  6. Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019;4:7. 
  7. Feola S, Chiaro J, Martins B, Cerullo V. Uncovering the tumor antigen landscape: what to know about the discovery process. Cancers (Basel) 2020;12:1660. 
  8. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013;13:227-242.  https://doi.org/10.1038/nrc3483
  9. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 2018;17:1-13. 
  10. Gutcher I, Becher B. APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 2007;117:1119-1127. 
  11. Pallerla S, Abdul AU, Comeau J, Jois S. Cancer vaccines, treatment of the future: with emphasis on HER2-positive breast cancer. Int J Mol Sci 2021;22:779. 
  12. Cho HI, Barrios K, Lee YR, Linowski AK, Celis E. BiVax: a peptide/poly-IC subunit vaccine that mimics an acute infection elicits vast and effective anti-tumor CD8 T-cell responses. Cancer Immunol Immunother 2013;62:787-799.  https://doi.org/10.1007/s00262-012-1382-6
  13. Barrios K, Celis E. TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother 2012;61:1307-1317.  https://doi.org/10.1007/s00262-012-1259-8
  14. Slingluff CL Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J 2011;17:343-350.  https://doi.org/10.1097/PPO.0b013e318233e5b2
  15. Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019;9:7807-7825.  https://doi.org/10.7150/thno.37194
  16. Ma M, Liu J, Jin S, Wang L. Development of tumour peptide vaccines: From universalization to personalization. Scand J Immunol 2020;91:e12875. 
  17. Abd-Aziz N, Poh CL. Development of peptide-based vaccines for cancer. J Oncol 2022;2022:9749363. 
  18. Hesse C, Kollenda S, Rotan O, Pastille E, Adamczyk A, Wenzek C, Hansen W, Epple M, Buer J, Westendorf AM, et al. A tumor-peptide-based nanoparticle vaccine elicits efficient tumor growth control in antitumor immunotherapy. Mol Cancer Ther 2019;18:1069-1080.  https://doi.org/10.1158/1535-7163.MCT-18-0764
  19. Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, a review. Cancers (Basel) 2020;12:1121.
  20. Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future. Mol Cell Proteomics 2021;20:100022. 
  21. Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016;4:56. 
  22. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010;9:1095-1107.  https://doi.org/10.1586/erv.10.89
  23. He X, Abrams SI, Lovell JF. Peptide delivery systems for cancer vaccines. Adv Ther 2018;1:1800060. 
  24. Gibney GT, Kudchadkar RR, DeConti RC, Thebeau MS, Czupryn MP, Tetteh L, Eysmans C, Richards A, Schell MJ, Fisher KJ, et al. Safety, correlative markers, and clinical results of adjuvant nivolumab in combination with vaccine in resected high-risk metastatic melanoma. Clin Cancer Res 2015;21:712-720.  https://doi.org/10.1158/1078-0432.CCR-14-2468
  25. Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, Feng L, Lee JJ, Tran H, Kim YU, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 2019;5:67-73.  https://doi.org/10.1001/jamaoncol.2018.4051
  26. Hailemichael Y, Woods A, Fu T, He Q, Nielsen MC, Hasan F, Roszik J, Xiao Z, Vianden C, Khong H, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest 2018;128:1338-1354. 
  27. Barrueto L, Caminero F, Cash L, Makris C, Lamichhane P, Deshmukh RR. Resistance to checkpoint inhibition in cancer immunotherapy. Transl Oncol 2020;13:100738. 
  28. Francis DM, Manspeaker MP, Schudel A, Sestito LF, O'Melia MJ, Kissick HT, Pollack BP, Waller EK, Thomas SN. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci Transl Med 2020;12:eaay3575. 
  29. Kim SH, Park HE, Jeong SU, Moon JH, Lee YR, Kim JK, Kong H, Park CS, Lee CK. Induction of peptide-specific CTL activity and inhibition of tumor growth following immunization with nanoparticles coated with tumor peptide-MHC-I complexes. Immune Netw 2021;21:e44.  https://doi.org/10.4110/in.2021.21.e44
  30. Saini SK, Ostermeir K, Ramnarayan VR, Schuster H, Zacharias M, Springer S. Dipeptides promote folding and peptide binding of MHC class I molecules. Proc Natl Acad Sci U S A 2013;110:15383-15388.  https://doi.org/10.1073/pnas.1308672110
  31. Jorgovanovic D, Song M, Wang L, Zhang Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark Res 2020;8:49. 
  32. Bhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis 2017;8:e2836. 
  33. Martins KA, Bavari S, Salazar AM. Vaccine adjuvant uses of poly-IC and derivatives. Expert Rev Vaccines 2015;14:447-459.  https://doi.org/10.1586/14760584.2015.966085
  34. Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif 2021;54:e13025. 
  35. Bai S, Jiang H, Song Y, Zhu Y, Qin M, He C, Du G, Sun X. Aluminum nanoparticles deliver a dual-epitope peptide for enhanced anti-tumor immunotherapy. J Control Release 2022;344:134-146.  https://doi.org/10.1016/j.jconrel.2022.02.027
  36. Carson CS, Becker KW, Garland KM, Pagendarm HM, Stone PT, Arora K, Wang-Bishop L, Baljon JJ, Cruz LD, Joyce S, et al. A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA. J Control Release 2022;345:354-370.  https://doi.org/10.1016/j.jconrel.2022.03.020
  37. Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: cancer vaccines at the bedside. J Leukoc Biol 2020;108:1455-1489.  https://doi.org/10.1002/JLB.5BT0420-585RR
  38. Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor peptide-based vaccine in the limelight. Vaccines (Basel) 2022;10:70.
  39. Kim SH, Moon JH, Jeong SU, Jung HH, Park CS, Hwang BY, Lee CK. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone. Int J Nanomedicine 2019;14:5229-5242.  https://doi.org/10.2147/IJN.S210546
  40. De Waele J, Verhezen T, van der Heijden S, Berneman ZN, Peeters M, Lardon F, Wouters A, Smits EL. A systematic review on poly(I:C) and poly-ICLC in glioblastoma: adjuvants coordinating the unlocking of immunotherapy. J Exp Clin Cancer Res 2021;40:213. 
  41. Sultan H, Salazar AM, Celis E. Poly-ICLC, a multi-functional immune modulator for treating cancer. Semin Immunol 2020;49:101414. 
  42. Hargadon KM, Johnson CE, Williams CJ. Immune checkpoint blockade therapy for cancer: an overview of FDA-approved immune checkpoint inhibitors. Int Immunopharmacol 2018;62:29-39.  https://doi.org/10.1016/j.intimp.2018.06.001
  43. Omar AI, Plengsuriyakarn T, Chittasupho C, Na-Bangchang K. Enhanced oral bioavailability and biodistribution of atractylodin encapsulated in PLGA nanoparticle in cholangiocarcinoma. Clin Exp Pharmacol Physiol 2021;48:318-328. 
  44. Rezvantalab S, Drude NI, Moraveji MK, Guvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018;9:1260.  https://doi.org/10.3389/fphar.2018.01260
  45. Roces CB, Christensen D, Perrie Y. Translating the fabrication of protein-loaded poly(lactic-co-glycolic acid) nanoparticles from bench to scale-independent production using microfluidics. Drug Deliv Transl Res 2020;10:582-593.  https://doi.org/10.1007/s13346-019-00699-y
  46. Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of immune responses by particle size and shape. Front Immunol 2021;11:607945. 
  47. Sadat SM, Jahan ST, Haddadi A. Effects of size and surface charge of polymeric nanoparticles on in vitro and in vivo applications. J Biomater Nanobiotechnol 2016;7:91-108. https://doi.org/10.4236/jbnb.2016.72011