• 제목/요약/키워드: Glycerol analysis

검색결과 168건 처리시간 0.019초

개선된 thin-layer chromatography를 이용한 바이오디젤 중의 글리세롤 정량분석 (Improvement in Thin-layer Chromatography in a Quantitative Assay of Glycerol in Biodiesel)

  • 이상은;최우석;강도형;이현용;정경환
    • 생명과학회지
    • /
    • 제23권4호
    • /
    • pp.537-541
    • /
    • 2013
  • Biodiesel 중의 glycerol을 분석하기 위하여 TLC를 이용하여 몇 가지 보고된 이동상에서 glycerol을 분석하였다. 그 중에서 acetonitrile : distilled water (85:15, v/v)를 이동상으로 하여 TLC를 수행하였을 경우에 짧은 시간에 명확한 glycerol band를 확인할 수 있었다. X축의 glycerol 농도를 log scale로 하고, TLC의 glycerol 이미지 면적을 Y축으로 하여 3.0-0.0625 (%, w/v)의 glycerol 농도범위에서 표준곡선을 작성할 수 있었으며, 이를 이용하여 0.2 (%, w/v)의 glycerol을 포함하는 biodiesel 시료에서 유의성 있게 glycerol을 정량분석 할 수 있음을 확인하였다. 이러한 결과는 chemical assay, enzymatic assay를 이용한 glycerol 분석과 비교하여 매우 유사한 결과이며, TLC를 이용한 biodiesel 중의 glycerol 정량법은 특별한 분석기기를 사용할지 않아도 되는 편리하고 간편한 방법으로 생각되어진다.

말라카이트 그린의 색엷음 현상을 이용한 글리세롤의 정량: 바이오디젤 내 반응물 분석의 적용 가능성 (Quantification of Glycerol by Malachite Green Fading Phenomenon: Application in Reaction By-Product of Biodiesel)

  • 이미화;이영철;신현재
    • KSBB Journal
    • /
    • 제26권5호
    • /
    • pp.471-476
    • /
    • 2011
  • Nowadays biodiesel (fatty acid methyl ester, FAME) has been becoming an important issue as a desired alternative of energy products because of non-toxic, biodegradable properties, and lower exhaust emissions. During esterification of fatty acids or transesterification of oils and fats with short chain alcohols by the alkali-catalyzed methanolysis, FAME and unrefined glycerol are generated. Quantification of glycerol as a by-product is important because of a determinant of biodiesel quality. However, the glycerol analysis by gas chromatography (GC) method has laborious works with sample preparation, long time and cost of sample analysis. Thus, there is a need to analyze glycerol more simply. Herein we demonstrate that the colorimetric assay for glycerol analysis conducted by UV-vis spectrophotometer at the wavelength 617 nm whose peak is maximum intensity of malachite green, resulting in the red-shift occurred proportionally as a function of glycerol amount. Thus, it is considered the solvent media for malachite green fading for biodiesel production: (1) water, (2) MeOH, and (3) EtOH. The resulting findings show that the peak intensity at 617 nm in glycerol-malachite green mixture had a relationship between glycerol concentration and degree of peak shift as increase in pure glycerol concentration approximately at pH 7.0. However, when it was measured the unrefined glycerol concentration by diluting and adjusting with water to buffer (pH 7.0), it was not observed the absorption peak at 617 nm because of impurities and OH ions. In case of glycerol from biodiesel production factories, glycerol concentration could be successfully measured.

이원계 금속산화물 촉매가 글리세롤카보네이트 합성에 미치는 영향 (The Effects of binary metal oxide catalysts for the synthesis of glycerol carbonate)

  • 백재호;문명준;이만식
    • 한국산학기술학회논문지
    • /
    • 제13권1호
    • /
    • pp.456-461
    • /
    • 2012
  • 본 연구에서는 글리세롤과 우레아를 이용하여 글리세롤카보네이트를 합성하는 반응을 진행하였다. ZnO와 Zn-Al 이원계 금속 산화물 촉매를 제조하고, 제조되어진 촉매를 사용하여 글리세롤의 전환율과 글리세롤카보네이트의 수율을 확인하였고, Al의 첨가에 따른 촉매 특성의 분석과 글리세롤카보네이트 합성반응에서의 역할에 대해 확인하였다. 글리세롤카보네이트 합성 반응에서 ZnO를 단독으로 촉매를 사용한 경우보다 Zn-Al 혼합 산화물을 촉매로 사용하여 반응하였을 때, 부반응이 억제되어 전환율 및 수율이 증가함을 확인하였다.

HPLC/ELSD에 의한 Mono-, Di- 및 Tri-glycerides류 분석 (Analysis of Mono-, Di- and Tri-glycerides by high-performance liquid chromatography (HPLC) with evaporative light scattering detection (ELSD))

  • 이만호;박희구;김인환
    • 분석과학
    • /
    • 제19권3호
    • /
    • pp.189-193
    • /
    • 2006
  • Chromatographic separation of glycerol monostearate, glycerol distearate and glycerol tristearate (GMS, GDS, and GTS) has been performed by normal phase HPLC method utilizing a Zorbax silica ($250{\times}4.6mm$, $5{\mu}m$) column and hexane-hexane, IPA and ethyl acetate mixtures as the eluent within 20 min. The observed reproducibility was less than 5% RSD, Suggesting that ELSD was an effective tool for detection of the glycerol stearates of low volatility without chromophore. The detection limits were in the concentration range of 0.3~2 mg/L, and the calibration curves (the log-log plots) were linear in the range of 4~1000 mg/L (with the slopes of 1.06~1.32). The application of the analytical procedure without pretreatment demonstrated that the proposed chromatographic method would be practical for a routine analysis of commercial products.

Glycerol Kinase 결핍증 (Isolated Glycerol Kinase Deficiency)

  • 최중완;이예승;배은주;오필수;박원일;이홍진
    • 대한유전성대사질환학회지
    • /
    • 제13권1호
    • /
    • pp.57-61
    • /
    • 2013
  • Glycerol kinase 결핍증(GKD)은 X-linked 열성유전되는 질환으로 생화학적으로 혈중 glycerol이 상승되고 소변으로 glycerol이 분비되는 질환이다. GK 유전자는 X chromosome 단완의 21.3 region에 위치하며, AHC gene과 DMD gene 사이에 직렬로 위치하고 있다. 만약 이부위에 긴 부분의 결손이 발생하면 이들 질환이 동시에 발생하게 되며, 이를 contiguous gene deletion syndrome이라고 부른다. 국내에서는 이 세 질환이 동시에 나타나는 contiguous gene deletion syndrome은 보고된 바 있으나 GK 결핍증만 단독으로 있었던 경우는 보고가 없었다. 저자들은 장염후의 고이화상태에서 저혈당과 의식의 혼탁으로 발현된 단독 GK 결손증을 보고하는 바이다.

  • PDF

Conformational Preferences of Glycerol in the Gas Phase and in Water

  • Jeong, Keun-Hong;Byun, Byung-Jin;Kang, Young-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.917-924
    • /
    • 2012
  • The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two $C_5$ hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory.

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

간접구 시술이 골격근 Adiposity 유발 쥐의 근육조직에 미치는 영향 (Effects of Indirect Moxibustion on Skeletal Muscles in Mouse Model of Skeletal Muscle Adiposity)

  • 이기수;홍권의
    • Journal of Acupuncture Research
    • /
    • 제31권1호
    • /
    • pp.7-21
    • /
    • 2014
  • Objectives : To observe the regenerative effects of indirect moxibustion, a traditional Korean medical treatment on skeletal muscles using mouse model of skeletal muscle adiposity. Methods : Twenty seven ICR male mice were randomly assigned into Intact control(n=3), glycerol treatment together without moxibustion(n=12), and glycerol treatment together with moxibustion (n=12) groups. Mice of glycerol treatment groups were injected with 50 ${\mu}l$ DW(distilled water) containing 50 % of glycerol into the two tibialis anterior. After injection, moxibustion was applied at 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) acupoints three times per each session, every days for twelve days(total 12 treatments). Phospho-Erk1/2, Myostatin protein levels were analyzed by western blotting and immunofluo-rescence staining techniques for tissues of the tibialis anterior muscle. Smad, phospho-Smad were analyzed by immunofluorescence staining. Results : 1. Histological analysis of sections from injected TA muscles showed that glycerol induced rapidly muscle necrosis, with a maximum at day 3. 6 days and 9 days after injection, muscle was regenerating. 2. According to western blotting and immunofluorescence staining, phospho-Erk1/2 protein signals in glycerol treatment with moxibustion group were stronger compared to Intact and glycerol treatment without moxibustion group. 3. According to western blotting and immunofluorescence staining, myostatin protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 4. According to immunofluorescence staining, Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. 5. According to immunofluorescence staining, phospho-Smad protein signals in glycerol treatment without moxibustion group were stronger compared to Intact and glycerol treatment with moxibustion group. Conclusions : These results confirm that indirect moxibustion of 'Shenshu'($BL_{23}$) and 'Zusanli'($ST_{36}$) influences muscle regeneration in mouse models of skeletal muscle adiposity. Further discussion, and the establishment of moxibustion mechanism will prompt clinical application of moxibustion.

Analysis of Glycerol with Isolation of Endogenous Interferences using "Dilute and Shoot" Strategy and High-Resolution Mass Spectrometry in Human Urine for Antidoping Testing

  • Kim, Yongseok;Min, Hophil;Sung, Changmin;Park, Ju-hyung;Son, Junghyun;Lee, Kang Mi;Kim, Ho Jun;Lee, Jaeick;Kwon, Oh-Seung;Kim, Ki Hun
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.111-115
    • /
    • 2016
  • Glycerol was identified and isolated from endogenous interferences during analysis of human urine using high-resolution mass spectrometry (HRMS) for doping control. Urinary sample preparation was simple; the samples were diluted with an organic solvent and then analyzed using a liquid chromatography-mass spectrometry ("dilute and shoot" method). Although the interfering ion peaks were observed at the similar retention time of glycerol, the inference could be identified by isolation with HRMS and further investigation. Thus, creatinine was identified as the endogenous interference for glycerol analysis and it also caused ion suppression resulting in the decrease of glycerol signal. This study reports the first identification and efficient isolation of endogenous interferences in human urine for "dilute and shoot" method. The information about ion suppression could be novel to prevent overestimation or a false result for antidoping analysis.

Proteomic and Phenotypic Analyses of a Putative Glycerol-3-Phosphate Dehydrogenase Required for Virulence in Acidovorax citrulli

  • Kim, Minyoung;Lee, Jongchan;Heo, Lynn;Lee, Sang Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • 제37권1호
    • /
    • pp.36-46
    • /
    • 2021
  • Acidovorax citrulli (Ac) is the causal agent of bacterial fruit blotch (BFB) in watermelon, a disease that poses a serious threat to watermelon production. Because of the lack of resistant cultivars against BFB, virulence factors or mechanisms need to be elucidated to control the disease. Glycerol-3-phosphate dehydrogenase is the enzyme involved in glycerol production from glucose during glycolysis. In this study, we report the functions of a putative glycerol-3-phosphate dehydrogenase in Ac (GlpdAc) using comparative proteomic analysis and phenotypic observation. A glpdAc knockout mutant, AcΔglpdAc(EV), lost virulence against watermelon in two pathogenicity tests. The putative 3D structure and amino acid sequence of GlpdAc showed high similarity with glycerol-3-phosphate dehydrogenases from other bacteria. Comparative proteomic analysis revealed that many proteins related to various metabolic pathways, including carbohydrate metabolism, were affected by GlpdAc. Although AcΔglpdAc(EV) could not use glucose as a sole carbon source, it showed growth in the presence of glycerol, indicating that GlpdAc is involved in glycolysis. AcΔglpdAc(EV) also displayed higher cell-to-cell aggregation than the wild-type bacteria, and tolerance to osmotic stress and ciprofloxacin was reduced and enhanced in the mutant, respectively. These results indicate that GlpdAc is involved in glycerol metabolism and other mechanisms, including virulence, demonstrating that the protein has pleiotropic effects. Our study expands the understanding of the functions of proteins associated with virulence in Ac.