Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.917

Conformational Preferences of Glycerol in the Gas Phase and in Water  

Jeong, Keun-Hong (Department of Chemistry, Korea Military Academy)
Byun, Byung-Jin (Department of Chemistry, Chungbuk National University)
Kang, Young-Kee (Department of Chemistry, Chungbuk National University)
Publication Information
Abstract
The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two $C_5$ hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory.
Keywords
Glycerol; Conformations; Hydrogen bonds; Density functional calculations; Solvation effects;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
2 Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.   DOI
3 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.   DOI   ScienceOn
4 Kang, Y. K. J. Mol. Struct.: THEOCHEM 2001, 546, 183.   DOI
5 Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986; Chapter 6.
6 Frisch, A.; Frisch, M. J.; Clemente, F. R.; Trucks, G. W. Gaussian 09 User's Reference; Gaussian, Inc.: Wallingford, CT, 2009.
7 Kang, Y. K.; Byun, B. J.; Park, H. S. Biopolymers 2010, 95, 51.   DOI
8 Champeney, D. C.; Joarder, R. N.; Dore, J. C. Mol. Phys. 1986, 58, 337.   DOI
9 Garawi, M.; Core, J. C.; Champeney, D. C. Mol. Phys. 1987, 62, 475.   DOI
10 Sarkar, S.; Joarder, R. N. Phys. Lett. A 1996, 222, 195.   DOI
11 Maccaferri, G.; Caminati, W.; Favero, P. G. J. Chem. Soc., Faraday Trans. 1997, 93, 4115.   DOI
12 Towey, J. J.; Soper, A. K.; Dougan, L. Phys. Chem. Chem. Phys. 2011, 13, 9397.   DOI   ScienceOn
13 van Den Enden, L.; van Alsenoy, C.; Scarsdale, J. N.; Schafer, L. J. Mol. Struct.: THEOCHEM 1983, 104, 471.   DOI
14 van Alsenoy, C.; Klimkowski, V. J.; Ewbank, J. D.; Schafer, L. J. Mol. Struct.: THEOCHEM 1985, 121, 153.   DOI
15 Callam, C. S.; Singer, S. J.; Lowary, T. L.; Hadad, C. M. J. Am. Chem. Soc. 2001, 123, 11743   DOI
16 Teppen, B. J.; Cao, M.; Frey, R. F.; van Alsenoy, C.; Miller, D. M.; Schafer, L. J. Mol. Struct.: THEOCHEM 1994, 314, 169.   DOI
17 Chelli, R.; Gervasio, F. L.; Gellini, C.; Procacci, P.; Cardini, G.; Schettino, V. J. Phys. Chem. A 2000, 104, 5351.   DOI
18 Chelli, R.; Gervasio, F. L.; Gellini, C.; Procacci, P.; Cardini, G.; Schettino, V. J. Phys. Chem. A 2000, 104, 11220.   DOI
19 Law, J. M.S.; Fejer, S. N.; Setiadi, D. H.; Chass, G. A.; Viskolcz, B. J. Mol. Struct.: THEOCHEM 2005, 722, 79.   DOI
20 Brisson, D.; Vohl, M.-C.; St-Pierre, J.; Hudson, T. J.; Gaudet, D. Bioessays 2001, 23, 534.   DOI
21 Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem., Int. Ed. 2007, 46, 4434.   DOI   ScienceOn
22 Pagliaro, M.; Rossi, M. The Future of Glycerol, 2nd ed.; Clark, J. H.; Kraus, G. A., Eds.; Royal Society of Chemistry: Cambridge, 2010.
23 Diaz-Alvarez, A. E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Chem. Commun. 2011, 47, 6208.   DOI
24 Bastiansen, O. Acta Chem. Scand. 1949, 3, 415.   DOI
25 van Koningsveld, H. Recl. Trav. Chim. Pays-Bas. 1968, 87, 243.   DOI
26 van Koningsveld, H. Recl. Trav. Chim. Pays-Bas. 1970, 89, 801.   DOI