• Title/Summary/Keyword: Glutathione Production

Search Result 433, Processing Time 0.028 seconds

Changes in element accumulation, phenolic metabolism, and antioxidative enzyme activities in the red-skin roots of Panax ginseng

  • Zhou, Ying;Yang, Zhenming;Gao, Lingling;Liu, Wen;Liu, Rongkun;Zhao, Junting;You, Jiangfeng
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.307-315
    • /
    • 2017
  • Background: Red-skin root disease has seriously decreased the quality and production of Panax ginseng (ginseng). Methods: To explore the disease's origin, comparative analysis was performed in different parts of the plant, particularly the epidermis, cortex, and/or fibrous roots of 5-yr-old healthy and diseased red-skin ginseng. The inorganic element composition, phenolic compound concentration, reactive oxidation system, antioxidant concentrations such as ascorbate and glutathione, activities of enzymes related to phenolic metabolism and oxidation, and antioxidative system particularly the ascorbate-glutathione cycle were examined using conventional methods. Results: Aluminum (Al), iron (Fe), magnesium, and phosphorus were increased, whereas manganese was unchanged and calcium was decreased in the epidermis and fibrous root of red-skin ginseng, which also contained higher levels of phenolic compounds, higher activities of the phenolic compound-synthesizing enzyme phenylalanine ammonia-lyase and the phenolic compound oxidation-related enzymes guaiacol peroxidase and polyphenoloxidase. As the substrate of guaiacol peroxidase, higher levels of $H_2O_2$ and correspondingly higher activities of superoxide dismutase and catalase were found in red-skin ginseng. Increased levels of ascorbate and glutathione; increased activities of $\text\tiny L$-galactose 1-dehydrogenase, ascorbate peroxidase, ascorbic acid oxidase, and glutathione reductase; and lower activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione peroxidase were found in red-skin ginseng. Glutathione-S-transferase activity remained constant. Conclusion: Hence, higher element accumulation, particularly Al and Fe, activated multiple enzymes related to accumulation of phenolic compounds and their oxidation. This might contribute to red-skin symptoms in ginseng. It is proposed that antioxidant and antioxidative enzymes, especially those involved in ascorbate-glutathione cycles, are activated to protect against phenolic compound oxidation.

Extract from Edible Red Seaweed (Gelidium amansii) Inhibits Lipid Accumulation and ROS Production during Differentiation in 3T3-L1 Cells

  • Seo, Min-Jung;Lee, Ok-Hwan;Choi, Hyeon-Son;Lee, Boo-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • GPAR{elidium (G.) amansii is a red alga widely distributed in the shallow waters around East Asian countries. We investigated the effect of G. amansii on lipid accumulation and ROS (Reactive Oxygen Species) production in 3T3-L1 cells. G. amansii extracts dose-dependently inhibited lipid formation and ROS generation in cultured cells. Our results showed that anti-adipogenic effect of G. amansii was due to the reduction in mRNA expressions of PPAR${\gamma}$(peroxisome proliferator-activated receptor-${\gamma}$) and aP2 (adipocyte protein 2). G. amansii extracts significantly decreased mRNA levels of a ROS-generator, NOX4 (nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4), and increased the protein levels of antioxidant enzymes including SOD1/2 (superoxide dismutases), Gpx (glutathione peroxidase), and GR (glutathione reductase), which can lead to the reduction of ROS in the cell. In addition, the G. amansii extract enhanced mRNA levels of adiponectin, one of the adipokines secreted from adipocytes, and GLUT4, glucose uptake protein. Taken together, our study shows that G. amansii extract inhibited lipid accumulation and ROS production by controlling adipogenic signals and ROS regulating genes.

The beneficial effect of Juglandis Semen extraction on oxidant-induced lung cell injury (폐(肺) 조직(組織)에서 호도(胡桃) 추출액(抽出液)이 산화성(酸化性) 세포(細胞) 손상(損傷)의 방어기전(防禦機轉)에 미치는 영향(影響))

  • Lee, Woo-Heon;Seo, Woon-Gyo;Jeong, Ji-Cheon
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.6 no.1
    • /
    • pp.163-176
    • /
    • 1997
  • This study was undertaken to determine whether Juglandis Semen extraction(JS) has a protective effect against the lung cell injury caused by oxidant, t-butythydroperoxide(t-BHP) and $H_2O_2$ in rabbit lung slices. JS significantly prevented an increase in water content induced by t-BHP. Similarly, JS significantly prevented the lipid peroxidation induced by t-BHP. Cellular concentration of glutathione, and the activities of catalase and superoxide dismutase were significantly not altered by 5% JS. However, JS at 5% concentration significantly increased the glutathione peroxidase activity in oxidant-treated and control tissues. JS decreased directly the production of superoxide or hydroxyl radical. These results indicate that JS prevents the cell injury and lipid peroxidation induced by oxidants in the lung. Such an antioxidant effect is attributed to enhancement of major endogenous antioxidant defence systems such as glutathione peroxidase and direct inhibition of oxygen free radical production.

  • PDF

Cytotoxic Effects of Nanoparticles Assessed In Vitro and In Vivo

  • Cha, Kyung-Eun;Myung, Hee-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1573-1578
    • /
    • 2007
  • An increasing number of applications is being developed for the use of nanoparticles in various fields. We investigated possible toxicities of nanoparticles in cell culture and in mice. Nanoparticles tested were Zn (300 nm), Fe (100 nm), and Si (10-20, 40-50, and 90-110 nm). The cell lines used were brain, liver, stomach, and lung from humans. In the presence of nanopaticles, mitochodrial activity decreased zero to 15%. DNA contents decreased zero to 20%, and glutathione production increased zero to 15%. None of them showed a dose dependency. Plasma membrane permeability was not altered by nanoparticles. In the case of Si, different sizes of the nanoparticles did not affect cytotoxicity. The cytotoxicity was also shown to be similar in the presence of micro-sized ($45\;{\mu}m$) Si particles. Organs from mice fed with nanoparticles showed nonspecific hemorrhage, lymphocytic infiltration, and medullary congestion. A treatment with the micro-sized particle showed similar results, suggesting that the acute in vivo toxicity was not altered by nano-sized particles.

Cadmium-Induced Phytotoxicity in Tomato Seedlings Due to the Accumulation of H2O2 That Results from the Reduced Activities of H2O2 Detoxifying Enzymes

  • Cho, Un-Haing
    • The Korean Journal of Ecology
    • /
    • v.27 no.2
    • /
    • pp.107-114
    • /
    • 2004
  • Tomato (Lycopersicon esculentum) seedlings exposed to various concentrations of $CdC1_2$ (0∼100 $\mu$M) in the nutrient solution for up to 9 days were analyzed with the seedling growth, $H_2O_2$ production, glutathione levels and activity changes of enzymes related to $H_2O_2$ removal. The growth of seedlings was inhibited with over 50 $\mu$M Cd, whereas the levels of $H_2O_2$ and glutathione were enhanced with Cd exposure level and time. Meanwhile, Cd exposure increased the activities of catalase (CAT) and glutathione reductase (GR) but decreased the activities of dehydroascorbate acid reductase (DHAR) and ascorbate peroxidase (APX) in both leaves and roots. These results suggest that the altered activities of antioxidant enzymes particularly involved in the $H_2O_2$ removal and the subsequent $H_2O$$_2$ accumulation could induce the Cd-induced phytotoxicity.

Potential for Efficient Synthesis of GSH Utilizing GCS1 and GLR1 Mutant Strains of Candida albicans

  • Jaeyoung SON;Min-Kyu KWAK
    • The Korean Journal of Food & Health Convergence
    • /
    • v.10 no.2
    • /
    • pp.7-11
    • /
    • 2024
  • Glutathione (GSH) is a vital compound composed of glutamic acid, cysteine, and glycine, crucial for cellular functions including oxidative stress defense and detoxification. It has widespread applications in pharmaceuticals, cosmetics, and food industries due to its antioxidant properties and immune system support. Two primary methods for GSH synthesis are enzymatic and microbial fermentation. Enzymatic synthesis is efficient but costly, while microbial fermentation, particularly using yeast strains like Candida albicans, offers a cost-effective alternative. This study focuses on genetically modifying C. albicans mutants, specifically targeting glutathione reductase (GLR1) and gamma-glutamylcysteine synthetase (GCS1) genes, integral to GSH synthesis. By optimizing these mutants, the research aims to develop a model for efficient GSH production, potentially expanding its applications in the food industry.

식물배양세포를 이용한 항산화연구

  • Kim, Gi-Yeon;Lee, Jeong-Eun;An, Yeong-Ok;Gwon, Seok-Yun;Lee, Haeng-Sun;Gwak, Sang-Su
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.65-68
    • /
    • 2000
  • To understand the antioxidative mechanism in plant cell cultures, we investigated the levels of antioxidant enzymes and low molecular antioxidants in 100 cell lines derived from different plant species. SOD and POD activities in plant cell lines were significantly higher than intact plants. The cell lines from sweet potato (Ipomoea batatas) and cassava (Manihot esculeanta) showed the highest POD and SOD activities, respectively, suggesting that the cell cultures of sweet potato and cassava are good biomaterials for the mass production and molecular study of antioxidant enzymes. The average ascorbate content in plant cell lines was several hundred times lower than intact plants, whereas the glutathione content was 2-3 times higher than plants. Interestingly, the ratio of reduced and oxidized ascorbate and glutathione was different from plant species. In conclusion, the results strongly suggest that plant cell cultures are good biomaterials for the study of antioxidative mechanism and the production of useful components including antioxidants.

  • PDF

Effects of Jindangwon extract in streptozotocin-induced diabetic rats (진당원(珍糖元)의 고혈당 조절 작용 및 기전에 관한 연구)

  • Kim, Hyung-Jun;Yoon, Cheol-Ho;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.277-287
    • /
    • 2004
  • Objective : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might playa major role. Therefore, many efforts have been made to regulate oxygen free radicals for treating diabetes and its complications. Because Jindangwon has been known to be effective in treatment of diabetes, the methanol extract of Jindangwon was tested for its effectiveness in reducing the oxidative stress induced by Streptozotocin. Methods : Jindangwon was washed, dried in the shade and crushed. The crushed Jindangwon was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ for 24 hours. The extract was filtered and evaporated under reduced pressure using a rotary evaporator to yield 30.6 g. Jindangwon extract was oral-administered to the diabetic rats induced by streptozotocin 50 mg per 1 kg of body weight for 15 days. The efficacy of the Jindangwon extract was examined with regard to the enzymatic pathways involved in the oxygen free radical production and the glutathione balance. Results : he effects of the methanol extract of Jindangwon in streptozotocin-induced diabetics rats with regard to body weight, blood glucose level, hepatic lipid peroxide level, hepatic xanthine oxidase activity and type conversion rate, hepatic glutathione level, hepatic glutathione peroxidase activity, hepatic glutathione reductase activity, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were favorable enough to suggest that it is a cure for diabetes and its complications. Conclusions :These results support Jindangwon as an effective reducing agent for oxidative stress in the tissues and organs by regulating the production of oxygen free radicals. Jindangwon, in particular, shows promising results for its use as a cure, or preventative medicine for diabetes and its complications by reducing oxidative stress in beta-cells of the pancreas.

  • PDF

Production and Characterization of Selenium Peptide from Saccharomyces Cerevisiae (효모를 이용한 selenium peptide 생산 및 특성 연구)

  • 김은기;김영옥;이정옥;이백석
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.1
    • /
    • pp.73-77
    • /
    • 2004
  • Selenium containing peptide was produced by culturing yeast with selenium, Selenium was broadly incorporated in the various size of proteins based on the GPC analysis of the total yeast protein. The ratio of selenium to protein increased with the concentration of added selenium in the culture medium. Antioxidant activity (glutathione peroxidase-like activity) was proportional to the concentration of selenium concentration in the peptide. Different size of proteins were obtained by hydrolyzing the total yeast protein by protease XIV. Average molecular weight of selenium peptide was analyzed by GPC. Glutathione peroxidase (GPx) activity of the selenium peptide increased as the size of peptide decreased. Sodium selenite had strong inhibition on the yeast growth than sodium selenate. The ratio of selenium to protein was higher with sodium selenate than with sodium selenite. These results showed the potentials of selenium peptide production by yeast cultivation.

Effects of the Mori folium Extract in Streptozotocin-Induced Diabetic Rats (고혈당 흰쥐에서 상엽(桑葉)의 혈당 조절과 항산화 작용에 관한 연구)

  • Kim, Oh-Gon;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.811-821
    • /
    • 2006
  • Objectives : Diabetes is a disease in which the body does not produce or properly use insulin. Etiological studies of diabetes and its complications showed that oxidative stress might play a major role. Therefore, many methods have been tried to regulate oxygen free radicals for treating diabetes and its complications. Because Mori foliumhas been known to be effective for the treatment of diabetes, the methanol extract of Mori folium was tested for its effectiveness in reducing the oxidative stress induced by streptozotocin. Methods : The crushed Mori folium was extracted 3 times, each time with 3 volumes of methyl alcohol at $60^{\circ}C$ or 24 h. The extract was filtered and evaporated under reduced pressure using a rotary evaporator to yield 11.7 g. Mori folium extract was oral-administered to diabetic rats induced by streptozotocin at 100 mg per 1 kg of body weight for 20 days. The efficacy of the Mori foliumextract was examined with regard to the enzymatic pathways involved in oxygen free radical production and glutathione balance. Results : The effects of the Mori foliumin streptozotocin-induced diabetic rats with regards to body weight, blood glucose and insulin level, hepatic lipid peroxide level, hepatic glutathione level, hepatic glutathione S-transferase and glutathione peroxidase level, hepatic aldose reductase activity, and hepatic sorbitol dehydrogenase activity were shown to be good enough to cure and prevent diabetes and its complications. Conclusions : These results indicated that Mori folium might reduce oxidative stress in tissues and organs by regulating the production of oxygen free radicals. Especially Mori folium might prevent and cure diabetes and its complications by reducing oxidative stress in the ${\beta}-cells$ of the pancreas.

  • PDF