• 제목/요약/키워드: Glutathione Production

검색결과 433건 처리시간 0.027초

Dietary Tea Catechin Inclusion Changes Plasma Biochemical Parameters, Hormone Concentrations and Glutathione Redox Status in Goats

  • Zhong, Rongzhen;Xiao, Wenjun;Ren, Guopu;Zhou, Daowei;Tan, Chuanyan;Tan, Zhiliang;Han, Xuefeng;Tang, Shaoxun;Zhou, Chuanshe;Wang, Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권12호
    • /
    • pp.1681-1689
    • /
    • 2011
  • The beneficial effects of tea catechins (TCs) are related not only to their antioxidant potential but also to the improvement of animal meat quality. In this study, we assessed the effects of dietary TC supplementation on plasma biochemical parameters, hormone responses, and glutathione redox status in goats. Forty Liuyang goats were randomly divided into four equal groups (10 animals/group) that were assigned to four experimental diets with TC supplementation at 4 levels (0, 2,000, 3,000 or 4,000 mg TC/kg DM feed). After a 60-day feeding trial, all goats were slaughtered and sampled. Dietary TC treatment had no significant effect on blood biochemical parameters, however, low-density lipoprotein cholesterol (p<0.001), triglyceride (p<0.01), plasma urea nitrogen (p<0.01), and glucose (p<0.001) decreased and total protein (p<0.01) and albumin (p<0.05) increased with the feeding time extension, and day 20 was the turning point for most of changes. Interactions were found in glutathione (p<0.001) and the ratio of reduced and oxidized glutathione (p<0.05) in whole blood between treatment and feeding time. Oxidized glutathione in blood was reduced (p<0.05) by 2,000 mg TC/kg feed supplementation, and a similar result was observed in longissimus dorsi muscle. Though plasma glutathione peroxidase (p<0.01) and glutathione reductase (p<0.05) activities were affected by treatment and feeding time interactions, and glutathione S-transferases activity increased with feeding day extension, no changed values appeared in longissimus dorsi muscle. In conclusion, dietary TC supplementation affected the concentrations of some blood metabolites and accelerated GSH depletion in the blood of goats. In terms of less high-density lipoprotein cholesterol, the highest insulin and IGF-I concentrations, the highest ratio of reduced and oxidized glutathione in plasma, the dosage of 2,000 mg TC/kg feed might be desirable for growing goats to prevent glutathione depletion and keep normal physiological metabolism.

Effect of Trolox C on Hypoxia/Reoxygenation-Induced Injury in Isolated Perfused Rat Liver

  • Lee, Sun-Mee;Cho, Tai-Soon
    • Archives of Pharmacal Research
    • /
    • 제20권5호
    • /
    • pp.471-475
    • /
    • 1997
  • Livers isolated from 18 hours fasted rats were subjected to N$_{2}$ hypoxia (for 45 min) followed by reoxygenation (for 45 min). The perfusion medium used was Krebs-Henseleit bicarbonate buffer (KHBB, pH 7.4). Lactate and alanine were added as gluconeogenic and ureagenic substrates and Trolox C was also added to perfusate. Oxygen consumption, lactate dehydrogenase (LDH), alanine transaminase (ALT), total glutathione, oxidized glutathione, bile flow, glucose and urea were measured. After hypoxia oxygen consumption significantly dropped but Trolox C had no influence on this decrease. ALT and LDH were significantly increased by hypoxia/reoxygenation. This increase was markedly attenuated in the presence of Trolox C. The total glutathione and oxidized glutathione efflux increased following hypoxia, which were prevented by the treatment of Trolox C. Bile flow rate decreased following hypoxia/reoxygenation but did not continue to decrease in the reoxygenation phase by Trolox C. Following hypoxia/reoxygenation glucose and urea releases decreased. Trolox C had no influence on inhibition of glucose and urea production. These results suggest that Trolox C protected the liver cells against hypoxia/reoxygenation injury, yielding further evidence for a causative role of oxidative stress in this model.

  • PDF

Effects of Panax Ginseng on the Development of Morphine Tolerance and Dependence

  • Kim, Hack-Seang;Oh, Ki-Wan;Park, Woo-Kyu;Shigeru Yamano;Satoshi Toki
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1987년도 Proceedings of Korea-Japan Panax Ginseng Symposium 1987 Seoul Korea
    • /
    • pp.38-46
    • /
    • 1987
  • The present study was undertaken to determine the inhibitory effects of orally administered ginseng saponins (GS), protopanaxadiol saponins(PD) and protopanaxatriol saponins(PT) on the development of morphine induced tolerance and physical dependence in mice, and to determine the increases in the loss of morphine tolerance and dependence. The study also sought to determine the hepatic glutathione contents, which are closely related to the degree of detoxication of morphinone, a novel metabolite of morphine, and the effects of ginseng saponins on morphine 6-dehydrogenase. The results of the present study showed that GS, PD and PT administered orally inhibited the development of morphine-induced tolerance and dependence. GS, PD and PT, however, increased the loss of morphine tolerance and dependence. GS, PD and PT inhibited the reduction of hepatic glutathione concentration in mice treated chronically with morphine, and the activity of morphine 6-dehydrogenase. So we hypothesized that these results were partially due to the dual action of the test drugs, the inhibition of morphine production and the activation in morphine-glutathione conjugation due to the increased glutathione level for detoxication.

  • PDF

Hepatotoxic Effect of 1-Bromopropane and Its Conjugation with Glutathione in Male ICR Mice

  • Lee Sang Kyu;Jo Sang Wook;Jeon Tae Won;Jun In Hye;Jin Chun Hua;Kim Ghee Hwan;Lee Dong Ju;Kim Tae-Oh;Lee Eung-Seok;Jeong Tae Cheon
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1177-1182
    • /
    • 2005
  • The hepatotoxic effects of 1-bromopropane (1-BP) and its conjugation with glutathione were investigated in male ICR mice. A single dose (1000 mg/kg, po) of 1-BP in corn oil to mice significantly increased serum activities of alanine aminotransferase and aspartate aminotransferase. Glutathione (GSH) content was dose-dependently reduced in liver homogenates 12 h after 1-BP treatment. In addition, 1-BP treatment dose-dependently increased levels of S-pro-pyl GSH conjugate at 12 h after treatment, as measured by liquid chromatography-electro-spray ionization tandem mass spectrometry. The GSH conjugate was maximally increased in liver at 6 h after 1-BP treatment (1000 mg/kg), with a parallel depletion of hepatic GSH content. Finally, 1-BP induced the production of malondialdehyde in liver. The present results suggest that 1-BP might cause hepatotoxicity, including lipid peroxidation via the depletion of GSH, due to the formation of GSH conjugates in male ICR mice.

Therapeutic Efficacy of Methanol Extract of Bidens tripartita in HT22 Cells by Neuroprotective Effect

  • Yerim Son;Choong Je Ma
    • Natural Product Sciences
    • /
    • 제29권2호
    • /
    • pp.67-73
    • /
    • 2023
  • Oxidative stress brings about apoptosis through various mechanisms. In particular, oxidative stress in neuronal cells can causes a variety of brain diseases. This study was conducted to investigate the effect of Bidens tripartita on oxidative stress in neuronal cells. B. tripartita has traditionally been used in Russia as a medicine for diseases such as rhinitis, angina and colitis. Over-production of glutamate induces oxidative stress. When the oxidative stress occurs in the cells, reactive oxygen species (ROS) and Ca2+ increase. In addition, the abrupt decline of mitochondrial membrane potential and the decrease of glutathione related enzymes such as glutathione reductase (GR) and glutathione peroxidase (GPx) are also observed. The samples used in the experiment showed cytoprotective effect in the MTT assay. It also lowered the ROS and Ca2+ level, and increased degree of mitochondrial membrane potential, GR and GPx. As a result, B. tripartita had a positive effect against oxidative stress. Thus, it is expected to have potential for treatment and prevention of degenerative brain diseases such as Alzheimer's disease.

효모에 의한 글루타치온의 생산과 공정 모니터링 (Production of Glutathione by yeast and Process Monitoring)

  • 김춘광;이종일
    • KSBB Journal
    • /
    • 제19권3호
    • /
    • pp.192-199
    • /
    • 2004
  • 본 연구에서는 글루타치온의 생산 공정을 개발하기 위해 효모의 성장특성, 글루타치온의 생산성 및 공정 모니터링에 관하여 조사하였다. 초기 pH가 4인 경우 40 mg/L 정도의 높은 글루타치온이 생산되었으며 배양온도에 따른 글루타치온의 생산은 3$0^{\circ}C$에서 가장 높게 나타났다. 그리고 최소 배지에 첨가한 시스테인은 배양 12시간에 넣었을 때 글루타치온의 생산성이 높게 나타났다. 생물 반응기를 이용한 회분식 배양에서 기질 농도에 따른 S. cerevisiae 성장 특성 및 글루타치온 생산은 글루코스 농도 20 g/L에서 글루타치온 생산량이 55 mg/L로 가장 높았다. 최소 배양액에 배양 초기에 0.5 % (v/v) 글라이신과 글루탐산을 각각 첨가하고 배양 11시간에 시스테인을 0.5% (v/v) 추가로 첨가한 경우에 글루타치온의 생산량이 많았다. 회분식 배양 후 기질을 첨가하는 유가식 발효 공정에서는 반응기내 글루코스 농도가 0.5 g/L 이하로 유지되도록 글루코스를 계단식으로 공급하였을 때 글루타치온은 약 102 mg/L로 높은 생산량을 나타내었다. 2차원 형광 센서를 이용하여 글루타치온 생산 공정의 온라인 모니터링은 배양액의 배지 조성이나 성장 특성 등 배양기내의 환경 변화에 따라 형광 영역 및 세기가 다르게 나타났으며 실시간 모니터링 된 형광 데이터는 기질 및 생산물 그리고 균체 성장 등의 각종 공정 변수와 좋은 상관성을 보였다. 따라서 2차원 형광 센서에 의한 모니터링은 글루타치온 대량 생산을 위한 실시간 모니터링에 매우 효과적이라 할 수 있다.

The Protective Effect of Chlorophyll a Against Oxidative Stress and Inflammatory Processes in LPS-stimulated Macrophages

  • Park, Ji-Young;Park, Chung-Mu;Kim, Jin-Ju;Noh, Kyung-Hee;Cho, Chung-Won;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.205-211
    • /
    • 2007
  • This study was designed to investigate the suppressive effect of chlorophyll a on nitric oxide (NO) production and intracellular oxidative stress. In addition, chlorophyll a regulation of nuclear factor (NF) ${\kappa}B$ activation and inducible NO synthase (iNOS) expression were explored as potential mechanisms of NO suppression in a lipopolysaccharide (LPS)-stimulated macrophage cell line. RAW 264.7 murine macrophages were preincubated with various concentrations ($0-10\;{\mu}g/ mL$) of chlorophyll a and stimulated with LPS to induce oxidative stress and inflammatory response. Treatment with chlorophyll a reduced the accumulation of thiobarbituric acid-reactive substances (TBARS), enhancing glutathione level and the activities of antioxidative enzymes including superoxide dismutase, catalase, glutathione peroxidase (GSH-px), and glutathione reductase in LPS-stimulated macrophages compared to LPS-only treated cells. NO production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $12.8\;{\mu}g/mL$. Treatment with chlorophyll a suppressed the levels of iNOS protein and its mRNA expression. The specific DNA binding activities of NFkB on nuclear extracts from chlorophyll a treated cells were significantly suppressed in a dose-dependent manner with an $IC_{50}$ of $10.7\;{\mu}g/mL$. Chlorophyll a ameliorates NO production and iNOS expression through the down-regulation of NFkB activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

인삼이 몰핀의 내성 및 의존성 형성에 미치는 영향 (Effect of Panax ginseng on the Development and Loss of Morphine Tolerance and Dependence)

  • 김학성;오기완
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1988년도 학술대회지
    • /
    • pp.151-155
    • /
    • 1988
  • 인삼사포닌, 프로토파낙사다이옥 사포닌 및 푸로토파낙사트리올 사포닌의 몰핀내성 및 의존성 형성억제 작용을 연구하였다. 인삼사포닌은 독성이 10배, 진통력은 1/2인 morphinone으로 대사시키는 morphine 6-hydrogenase의 작용을 억제시켜 morphinone의 생성을 증가시켜 morphine glutathione conjugation을 촉진시키므로 morphinone의 해독작용이 증가된다. 또한 인삼은 척수하행성 억제계의 활성을 억제하여 몰핀의 진통력을 길항하므로 신경계 기능상의 변화도 몰핀의 내성 및 의존성형성 억제작용에 관여하는 것으로 추정된다.

  • PDF

$CCI_4$와 Lipopolysaccharide로 유도한 흰쥐 간 독성에 대한 YH439의 방어작용 : cytokines 및 nitric oxide 생성의 억제 (YH439, a Hepatoprotective Agent, Suppresses Cytokines and Nitric Oxide Production in LPS-primed Rats Administered with $CCL_4$)

  • 김연숙;이종욱;김낙두
    • 약학회지
    • /
    • 제43권2호
    • /
    • pp.198-207
    • /
    • 1999
  • The aim of the present investigation was to examine whether YH439, a hepatoprotective agent, exerts protective effect against hepatotoxicity and reduces the production of cytokines and NO in lipopolysaccharide (LPS)-primed rats with carbon tetrachloride ($CCl_4$). Administration of LPS following a single dose of CCl4 injection resulted in remarkable elevations of the serum $TNF{\alpha},{\;}IL-l{\beta$ and IL-6 level. The serum NO level was moderately elevated and severe liver damage was evidenced by increases in serum alanine aminotransferase (ALT) and sorbitol dehydrogenase (SDH) activities. YH439 decreased the levels of TNF, $IL-l{\beta}$, IL-6, ALT, SDH as well as NO in the serum elevated by CCl4+LPS in a dose-dependent manner. Inducible nitric oxide synthase (iNOS) level was decreased in the liver of rats treated with YH439. The increased iNOS activity induced by LPS and $interferon-{\gamma}$ was significantly decreased in RAW 264.7 cells by YH439 treatment. YH439 increased the GSH level decreased by $CCl_4+LPS$ and suppressed the ratio of GSSG/GSH. The reduction of hepatotoxicity by YH439 may associated with the decrease in the production of cytokines as well as suppression of iNOS protein in conjunction with an increase in the GSH level.

  • PDF

좌귀음(左歸飮)과 우귀음(右歸飮)에 의(依)한 활성(活性) 산소류(酸素類)의 소거작용(消去作用)과 항산화(抗酸化) 효소계(酵素系)의 활성(活性) 증가(增加) 효과(效果)에 대(對)한 연구(硏究) (Increased antioxidant enzyme activities and scavenging effect of oxygen free radicals by Jwagyuyeum and Woogyuyeum)

  • 정지천
    • 대한한의학회지
    • /
    • 제17권1호
    • /
    • pp.21-36
    • /
    • 1996
  • This study was undertaken to examine the effect of Jwagyuyeum and Woogyuycum, being known to reinforce Kidney-yin and yang, on the activities of endogenous antioxidant enzymes and the production of oxygen free radicals in the liver and kidney tissues, Alterations in enzyme activities were observed after in vivo treatment in rats, Jwagyuyeum and Woogyuyeum caused a significant increase in the activities of superoxide dismutase(SOD) and catajase Jwagyuyeum significantly increased the activity of glutathione peroxidase in both liver and kidney, but the enzyme activity was not significantly altered by Woogyuyeum. Treatment in vitro of Jwagyuyeum and Woogyuyeum decreased the production of oxygen free radicals in a dose-dependent fashion. These results suggest that Jwagyuyeum and Woogyuyeum stimulate the activities of antioxidant enzymes and inhibit directly the production of oxygen free radicals. These effects of both herbs may contribute to prevent the oxygen free radical-induced impairment of cell function.

  • PDF