• Title/Summary/Keyword: Glutathion reductase (GR)

Search Result 5, Processing Time 0.024 seconds

Antioxidant Enzyme Activities in Tissues of Papilio xuthus during Pupal Stage (호랑나비의 용기 동안 조직 내 항산화 효소의 활성)

  • Shin, Myung-Ja;Kim, Kyoung-Keun;Lim, Jae- Hwan;Jeong, Hyung-Jin;Seo, Eul-Won
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.228-233
    • /
    • 2009
  • The purpose of this study is to evaluate the activities of five different antioxidant enzymes in various tissues of Papilio xuthus during pupal stage. Superoxide dismutase (SOD) activity in haemolymph was the highest just after pupation and then decreased gradually until 7 days after pupation but the activity in other tissue was constant during metamorphosis. This result indicates that primary antioxidant process of reactive oxygen species proceed in haemolymph. Catalase (CAT) activity in studied tissues was also the highest just after pupation and its relative activity was also high during pupal stage, suggesting that CAT is the primary enzyme in catalysis of hydrogen peroxide. Glutathion peroxidase (GPX) activity was constant and its relative activity was very low in all tested tissues. Glutathione S-transferase (GST) activity in haemolymph was high at 3 days and 5 days after pupation, and the activity in fat body was the highest at the 1 day after pupation and then decreased gradually for 7 days after pupation. Glutathion reductase (GR) activity in haemolymph and fat body was high at 1 day after pupation, but relatively low GR activity was detected in the rest tissues. Based on these results, GST activity was higher than that of GPX and GR, and it is also believed that GST was more involved in reduction process through lipid peroxidation than GPX.

Development of Environmental Stress-Tolerant Plants by Gene Manipulation of Antioxidant Enzymes

  • Kwon, Suk-Yoon;Lee, Haeng-Soon;Kwak, Sang-Soo
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • Oxidative stress is one of the major limiting factor in plant productivity. Reactive oxygens species (ROS) generated during metabolic processes damage cellular functions and consequently lead to disease, senescence and cell death. Plants have evolved an efficient defense system by which the ROS is scavenged by antioxidant enzymes such as superoxide dismutase (SOD) and ascorbate peroxidase (APX). Attempts to reduce oxidative damages under the stress conditions have included the manipulation of 갠 scavenging enzymes by gene transfer technology. Increased SOD activities of transgenic plants lead to increased resistance against oxidative stresses derived from methyl viologen (MV), and from photooxidative damage caused by high light and low temperature. Transgenic tobacco plants overexpressing APX showed reduced damage following either MV treatment of photooxidative treatment. Overexpression of glutathion reductase (GR) leads to increase in pool of ascorbate and GSH, known as small antioxidant molecules. These results indicate through overexpression of enzymes involved in ROS-scavenging could maintain or improve the plant productivities under environment stress condition. In this study, the rational approaches to develop stress-tolerant plants by gene manipulation of antioxidant enzymes will be introduced to provide solutions for the global food and environmental problems in the $21^\textrm{st}$ century.

  • PDF

Effects of Camellia sinensis Extracts on the Antioxidant System and Alcohol Down-Regulation Enzymes in Sub-Acute Ethanol Treated ICR Mice (차나무(Camellia sinensis) 추출물이 아급성 알코올 투여 마우스의 항산화 및 알코올 분해 효소 활성에 미치는 영향)

  • Koo, Sung-Ja;Choi, Il-Sook;Kong, Yeon-Hee;Choi, Sang-Yoon;Jo, Youn-Ock
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.9
    • /
    • pp.1134-1139
    • /
    • 2007
  • This study was conducted to investigate the effects of four kinds of tea (Camellia sinensis) extracts on the antioxidant defense systems as well as the activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) in ethanol administered ICR mice. According to the results, treatment with puerh tea significantly increased the superoxide dismutase activity and glutathion reductase activity in liver. In addition, the group treated with oolong tea exhibited higher superoxide dismutase activity and glutathion reductase activity in serum than those of puerh tea, green tea and black tea treated groups. The oolong tea and puerh tea also reduced malondealdehyde contents in both liver and serum. These results suggested that puerh tea and oolong tea were the most effective against alcohol-induced oxidative damage among the Camellia sinensis teas. On the other hand, in the measurement of alcohol break-down enzyme activities, the group treated with green tea exhibited the highest hepatic ADH and ALDH activities, suggesting that the group treated with green tea might be useful for alcohol down-regulation.

Antioxidant Effect of Hot water and Ethanol extracts from Cheonnyuncho (Opuntia humifusa) on Reactive Oxygen Species (ROS) Production in 3T3-L1 Adipocytes (3T3-L1 지방세포내 ROS 생성에 대한 천년초 열수 및 에탄올 추출물의 항산화 효과)

  • Yoon, Bo-Ra;Lee, Young-Jun;Kim, Sun-Gu;Jang, Jung-Young;Lee, Hyo-Ku;Rhee, Seong-Kap;Hong, Hee-Do;Choi, Hyeon-Son;Lee, Boo-Yong;Lee, Ok-Hwan
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.443-450
    • /
    • 2012
  • Recently, NADPH oxidase 4 (NOX4)-mediated generation of intracellular reactive oxygen species (ROS) was proposed to accelerate adipogenesis of 3T3-L1 cell. We have previously shown that Cheonnyuncho (Opuntia humifusa) extract significantly inhibited adipocyte differentiation via downregulation of $PPAR{\gamma}$ (peroxisome proliferator-activated receptor gamma) gene expression. In this study, we focused on the molecular mechanism(s) of NOX4, G6PDH (glucose-6-phosphate dehydrogenase) and antioxidant enzymes in anti-oxidative activities of 3T3-L1 adipocytes. Our results indicate that Cheonnyuncho extracts markedly inhibits ROS production during adipogenesis in 3T3-L1 cells. Cheonnyuncho extracts suppressed the mRNA expression of the pro-oxidant enzyme such as NOX4 and the NADPH-producing G6PDH enzyme. In addition, treatment with Cheonnyuncho extract was found to upregulate mRNA levels of antioxidant enzymes such as Mn-SOD (manganese-superoxide dismutase), Cu/Zn-SOD (copper/zinc-SOD), glutathione peroxidase (GPx), glutathion reductase (GR), and catalase, all of which are important for endogenous antioxidant responses. These data suggest that Cheonnyuncho extract may be effective in preventing the rise of oxidative stress during adipocyte differentiation through mechanism(s) that involves direct down regulation of NOX4 and G6PDH gene expression or via upregulation of endogenous antioxidant responses.