Browse > Article
http://dx.doi.org/10.5352/JLS.2009.19.2.228

Antioxidant Enzyme Activities in Tissues of Papilio xuthus during Pupal Stage  

Shin, Myung-Ja (Dept. of Biological Science, Andong National University)
Kim, Kyoung-Keun (Dept. of radio-technology, Daegu Polytechnic College)
Lim, Jae- Hwan (Dept. of Biological Science, Andong National University)
Jeong, Hyung-Jin (School of Bioresource Science, Andong National University)
Seo, Eul-Won (Dept. of Biological Science, Andong National University)
Publication Information
Journal of Life Science / v.19, no.2, 2009 , pp. 228-233 More about this Journal
Abstract
The purpose of this study is to evaluate the activities of five different antioxidant enzymes in various tissues of Papilio xuthus during pupal stage. Superoxide dismutase (SOD) activity in haemolymph was the highest just after pupation and then decreased gradually until 7 days after pupation but the activity in other tissue was constant during metamorphosis. This result indicates that primary antioxidant process of reactive oxygen species proceed in haemolymph. Catalase (CAT) activity in studied tissues was also the highest just after pupation and its relative activity was also high during pupal stage, suggesting that CAT is the primary enzyme in catalysis of hydrogen peroxide. Glutathion peroxidase (GPX) activity was constant and its relative activity was very low in all tested tissues. Glutathione S-transferase (GST) activity in haemolymph was high at 3 days and 5 days after pupation, and the activity in fat body was the highest at the 1 day after pupation and then decreased gradually for 7 days after pupation. Glutathion reductase (GR) activity in haemolymph and fat body was high at 1 day after pupation, but relatively low GR activity was detected in the rest tissues. Based on these results, GST activity was higher than that of GPX and GR, and it is also believed that GST was more involved in reduction process through lipid peroxidation than GPX.
Keywords
Antioxidant enzyme; tissue; pupal stage; Papilio xuthus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pardini, R. S. 1995. Toxicity of oxygen from naturally occurring redox-active pro-oxidant. Arch. Insect Biochem. Physiol. 29, 101-118.   DOI   ScienceOn
2 Peric-Mataruga, V., D. Blagojevic, M. B. Spasic, J. Ivanovic, and M. Jankovic-Hladni. 1997. Effect of the host plant on the antioxidative defence in the midgut of Lymantria dispar L. caterpillars of different population origins. J. Insect Physiol. 43, 101-106.   DOI   ScienceOn
3 Peters, L. D. and D. R. Livingstine. 1996. Antioxidant enzyme activities in embryologic and early larval stages of turbot. J. Fish Biol. 49, 986-997   DOI   ScienceOn
4 Pritsos, C. A., S. Ahmad, S. M. Bowen, A. J. Elliott, G. J. Blomquist, and R. S. Pardini. 1988. Antioxidant enzymes of the black swallowtail butterfly, Papilio polixenes and their response to the prooxidant allelochemical quercetin. Arch. Insect Biochem. Physiol. 8, 101-112   DOI
5 Pritsos, C. A., S. Ahmad, A. J. Elliott, and R. S. Pardini. 1990. Antioxidant enzyme levels response to prooxidant allelochemicals in larvae of southern armyworm moth, Spodoptera eridania. Free Radical Res. Commun. 9, 127-133   DOI
6 Riddiford, L. M. and M. Hori. 1985. Hormone action at the cellular level, pp. 37-84, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, Vol. 8, Pergamon Press, Oxford.
7 Schafer, F. Q. and G. R. Buettner. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biol. Med. 30, 1191-1212
8 Suzuki, Y. J., H. J. Forman, and A. Sevanian. 1997. Oxidant as stimulators of signal transduction. Free Radical Biol. Med. 22, 269-285   DOI   ScienceOn
9 Flohe, L., A. Wolfgang, and W. A. Gunzler. 1984. Assay of glutathione peroxidase, pp. 105-114, In Packer, L. (ed.), Methods in enzymatic analysis, Academic Press Inc., New York
10 Glatzle, D., J. P. Vuilleumier, F. Weber, and K. Decker. 1974. Glutathione reductase test with whole blood, a convenient procedure for the assessment of the riboflavin status in humans. Experientia. 30, 665-668   DOI   ScienceOn
11 Grubor-Lajsic, G., W. Block, M. Telesmanic, A. Jovanovic, D. Stevanovic, and F. Baca. 1997. Effect of cold acclimation on the antioxidant defense system of two larval Lepidoptera. Arch. Insect Biochem. Physiol. 36, 1-10
12 Habig, W. H. and W. B. Jakoby. 1981. Glutathione s-transferase in rat and human. Meth. Enzymol. 77, 218-231   DOI
13 Halliwell, B. and J. M. C. Gutteridge. 1985. Free radicals in biology and medicine. pp. 323, Oxford University Press, London
14 Krogh, A. and T. Weis-Fogh. 1951. The respiratory exchange of desert locust (Schisticerca gregaria), before, during and after flight. J. Exp. Biol. 28, 342-257   DOI   ScienceOn
15 McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase an enzymic function for erythrocuprotein (Hemocuprotein). J. Biol. Chem. 244, 6049-6055
16 Neto, P. C., E. J. H. Bechara, and C. Costa. 1986. Oxygen toxicity aspects in luminescent and non-luminescent elaterid larvae. Insect Biochm. 16, 381-385   DOI   ScienceOn
17 Nickla, H., J. Anderson, and T. Palzkill. 1983. Enzymes involved in oxygen detoxification during development of Drosophila mlanogaster. Experentia. 39, 610-612   DOI   ScienceOn
18 Orr, W. C. and R. S. Sohal. 1994. Extension of life-span by over expression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130   DOI
19 Ahmad, S. 1995. Oxidative stress and antioxidant defenses in biology. pp. 38-272, Chapman and Hall, NewYork
20 Ahmad, S. 1992. Biochemical evidence of pro-oxidant allelochemicals by hervivorous insects. Biochem. Syst. Ecol. 20,269-296   DOI   ScienceOn
21 Ahmad, S., C. A. Pritsos, S. M. Bowen, C. R. Heisler, G. J. Blomquist, and R. S. Pardini. 1988. Subcellular distribution and activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase in the southern army worm, Spodoptera eridania. Arch. Insect Bichem. Physiol. 7, 173-186   DOI
22 Ahmad, S., M. A. Beilstein, and R. S. Pardini. 1989. Glutathione peroxidase activity in insects: A reassessment. Arch. Insect Biochem. Physiol. 12, 31-49   DOI
23 Barbehenn, R. V. and J. Stannard. 2004. Antioxidant defense of the midgut epitherium by the peritrophic envelope in caterpillars. J. Insect Physiol. 9, 783-790
24 Dalton, T. P., H. G. Shertzer, and A. Puga. 1999. Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39, 67-101   DOI   ScienceOn
25 Downer, R. G. H. 1985. Lipid metabolism, pp. 77-113, In Kerkut, G. A. and L. I. Gilbert (eds.), Comprehensive insect physiology, biochemistry and pharmacology, Vol. 10, Pergamon Press, Oxford
26 Felton, G. W. 1995. Antioxidant defenses of invertebrates and vertebrates, pp. 356-434, In Ahmad, S. (ed.), Oxidative stress and Antioxidant Defenses in Biology, Chapman and Hall, NewYork
27 Felton, G. W. and C. B. Summers. 1995. Antioxidant systems in insect. Arch. Insect Biochem. Physiol. 29, 187-197
28 Aebi, H. 1984. Catalase in vitro, pp. 121-126, In Packer, L. (ed.), Methods in Enzymology, Vol. 105, Academic Press Inc., NewYork