• 제목/요약/키워드: Glut4

Search Result 182, Processing Time 0.025 seconds

Study of the mechanisms underlying increased glucose absorption in Smilax china L. leaf extract-treated HepG2 cells (청미래덩굴 잎 물추출물이 처리된 HepG2 세포에서의 포도당흡수기전 연구)

  • Kang, Yun Hwan;Kim, Dae Jung;Kim, Kyoung Kon;Lee, Sung Mee;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • Purpose: Previous studies have shown that treatment with Smilax china L. leaf extract (SCLE) produces antidiabetic effects due to ${\alpha}$-glucosidase inhibition. In this study, we examined the mechanism underlying these antidiabetic effects by examining glucose uptake in HepG2 cells cultured with SCLE. Methods: Glucose uptake and glucokinase activity were examined using an assay kit. Expression of glucose transporter (GLUT)-2, GLUT-4, and HNF-$1{\alpha}$ was measured by RT-PCR or western blot. Results: Treatment with SCLE resulted in enhanced glucose uptake in HepG2 cells, and this effect was especially pronounced when cells were cultured in an insulin-free medium. SCLE induced an increase in expression of GLUT-2 but not GLUT-4. The increase in the levels of HNF-$1{\alpha}$, a GLUT-2 transcription factor, in total protein extract and nuclear fraction suggest that the effects of SCLE may occur at the level of GLUT-2 transcription. In addition, by measuring the change in glucokinase activity following SCLE treatment, we confirmed that SCLE stimulates glucose utilization by direct activation of this enzyme. Conclusion: These results demonstrate that the potential antidiabetic activity of SCLE is due at least in part to stimulation of glucose uptake and an increase in glucokinase activity, and that SCLE-stimulated glucose uptake is mediated through enhancement of GLUT-2 expression by inducing expression of its transcription factor, HNF-$1{\alpha}$.

2,7-Phloroglucinol-6,6-Bieckol Increases Glucose Uptake by Promoting GLUT4 Translocation to Plasma Membrane in 3T3-L1 Adipocytes (2,7-Phloroglucinol-6,6-Bieckol의 3T3-L1 지방세포에서 GLUT4 활성화를 통한 포도당 흡수 증진 효과)

  • Lee, Hyun-Ah;Han, Ji⁃Sook
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.729-735
    • /
    • 2021
  • Type 2 diabetes occurs when there is an abnormality in the tissue's ability to absorb glucose. Glucose uptake and metabolism by insulin are the basic mechanisms that maintain blood sugar. Glucose uptake goes through various signaling steps initiated by the binding of insulin to receptors on the cell surface. In line with the foregoing, the purpose of this study was to investigate the effect of 2,7-phloroglucinol-6,6-bieckol (PHB), an active compound isolated from Ecklonia cava, on glucose uptake in 3T3-L1 adipocytes. Notably, PHB increased glucose uptake in a dose-dependent manner owing to the enhanced glucose transporter type 4 (GLUT4) expression in the plasma membrane of 3T3-L1 adipocytes. These effects of PHB were attributed to the phosphorylation of insulin receptor substrate-1 and protein kinase B (PKB or AKT), as well as to the phosphoinositide 3-kinase (PI3K) activation in the insulin signaling pathway. PHB also stimulated 5' AMP-activated protein kinase (AMPK) phosphorylation and activation. The phosphorylation and activation of the PI3K/AKT and AMPK pathways by PHB were identified using wortmannin (a PI3K inhibitor) and compound C (an AMPK inhibitor). In this study, we showed that PHB can increase glucose uptake in 3T3-L1 adipocytes by promoting GLUT4 translocation to the plasma membrane via the PI3K and AMPK pathways. The results indicate that PHB may help improve insulin sensitivity.

Immunohistochemical Evaluation of Glucose Transporter Type 1 in Epithelial Dysplasia and Oral Squamous Cell Carcinoma

  • Pereira, Karuza Maria Alves;Feitosa, Sthefane Gomes;Lima, Ana Thayssa Tomaz;Luna, Ealber Carvalho Macedo;Cavalcante, Roberta Barroso;Lima, Kenio Costa de;Chaves, Filipe Nobre;Costa, Fabio Wildson Gurgel
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.147-151
    • /
    • 2016
  • Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and some of these have been documented in association or preceded by oral epithelial dysplasia (OED). Aggressive cancers with fast growth have demonstrated overexpression of some glucose transporters (GLUTs). Thus, the aim of this study was to analyze the immunohistochemical expression of the glucose transporter, GLUT-1, in OEDs and OSCCs, seeking to better elucidate the biological behavior of neoplasias. Fifteen cases were selected this research of both lesions. Five areas were analyzed from each case by counting the percentage of positive cells at 400x magnification. Immunoreactivity of GLUT-1 was observed in 100% of the samples ranging from 54.2% to 86.2% for the OSCC and 73.9% to 97.4% for the OED. Statistical test revealed that there was greater overexpression of GLUT-1 in OED than the OSCC (p=0.01). It is believed the high expression of GLUT-1 may reflect the involvement of GLUT-1 in early stages of oral carcinogenesis.

Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes (사람 암세포와 단핵세포에서 고포도당 농도에 의한 FDG 섭취 저하의 서로 다른 기전)

  • Kim, Chae-Kyun;Chung, June-Key;Lee, Yong-Jin;Hong, Mee-Kyoung;Jeong, Jae-Min;Lee, Dong-Soo;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.110-120
    • /
    • 2002
  • To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied $[^{18}F]$ fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5 - 10.8 mU/mg), while SNU-C5 and monocytes showed lower range of hexokinase activity (4.3 - 6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

Antidiabetic Activity of Formula Containing Euonymus Alatus (Thunb.) Sieb. and Mori Folium in Multiple Low Dose Streptozotocin-induced Diabetic Rats (저용량 스트렙토조토신 유도 당뇨 흰쥐에서 화살나물.상엽 복합 처방의 항당뇨 활성)

  • 김희자;이성현;정성현
    • YAKHAK HOEJI
    • /
    • v.48 no.4
    • /
    • pp.247-253
    • /
    • 2004
  • We investigated the hypoglycemic effect of formula containing Euonymus alatus (EA) and Mori Folium (MF) in multiple low dose (MLD) streptozotocin (STZ)-induced diabetic rats. In order to iduce hyperglycemic state 25 mg/kg of STZ was injected intraperitoneally for 5 consecutive days. SD rats were randomly divided into diabetic control and treatment groups. Treatment groups were administered with either 250 mg/kg of EA and 250 mg/kg of MF (E1Ml), or 500 mg/kg of EA mixed with same dose of MF (E2M2) for 3 weeks. Blood glucose levels and body weights were measured every 5th or 6th day. E1Ml and E2M2 both significantly reduced food intake, water intake, and fasting blood and urine glucose levels as compared to those in diabetic control group in a dose dependent manner. Body weight in diabetic control group was increased slightly after 3 weeks. Treatment group, however, showed gradual increase in body weights during 3 week-period. While plasma insulin levels of the diabetic control group were decreased to the level of 387$\pm$14 pg/ml from 534$\pm$36 pg/ml, those levels in E1Ml and E2M2-treated groups were both markedly increased by 13% and 26%, respectively. Urine glucose levels in E1Ml and E2M2-treated groups were also remarkably reduced by 17 and 26% compared to the levels of diabetic control group. While expression of membrane-bound glucose transporter-4 (GLUT-4) protein in skeletal muscle was reduced by 45% in diabetic control compared to the normal control, GLUT-4 protein expressions in E1Ml and E2M2-treated groups were augmented by 2 and 3.5 times compared to the diabetic control, respectively. Pancreatic HE staining experiments showed that E2M2-treated group revealed much less infiltrated mononuclear cells, indicating that E2M2 efficiently blocked insulitis induced by multiple low dose streptozotocin. Taken together, we conclude that formula containing EA and MF may prevent or delay the development of hyperglycemia through overexpression of GLUT-4 protein in skeletal muscle and prevention of insulitis.

Glucose Transporter Gene Expression in Human Lung Cancer Cell Lines (사람 폐암 세포주에서 포도당 운반 단백 유전자의 발현)

  • Kim, Woo-Jin;Yim, Jae-Joon;Lee, Jae-Ho;Yoo, Chul-Gyu;Chung, Hee-Soon;Han, Sung-Koo;Chung, June-Key;Shim, Young-Soo;Kim, Young-Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.760-765
    • /
    • 1998
  • Background: Glucose uptake has been found to be increased in cancer cells, and FDG-PET imaging is used for diagnosis of cancer using this phenomenon. However, the exact mechanism of increased glucose uptake in cancer cells has not been clarified. Recent studies demonstrated the presence of glucose transporter(GLUT) mRNA expression in gastrointestinal cancer and head and neck cancer, and suggested that GLUT may be associated with glucose uptake in cancer cells. In lung cancer cells, glucose metabolism is also known to be increased. We evaluated GLUT mRNA expression in human lung cancer cell lines in order to find out the mechanism of increased glucose uptake in lung cancer. Method: Total RNA was isolated from 15 human lung cancer cell lines and immortalized bronchial epithelial cell line(BEAS-2B). After electrophoresis of $20{\mu}g$ total RNA, Northern blot analysis was done using GLUT1 cDNA and GLUT3 cDNA as probes. Results: Thirteen of 14 human lung cancer cell lines expressed GLUT1 mRNA and 10 of 14 human lung cancer cell lines expressed GLUT3 mRNA. Eight human lung cancer cell lines expressed both GLUT mRNAs. BEAS-2B expressed GLUT1 mRNA and did not express detectable GLUT3 mRNA. Conclusion: The increase of glucose metabolism in lung cancer may be associated with GLUT1 and GLUT3 expression.

  • PDF

Correlation between glucose transporter type-1 expression and $^{18}F$-FDG uptake on PET in oral cancer

  • Kim, Chul-Hwan;Kim, Moon-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Objectives: Fluorine-18 fluorodeoxyglucose positron emission tomography ($^{18}F$-FDG PET) is a non-invasive diagnostic tool for many human cancers wherein glucose uptake transporter-1 (GLUT-1) acts as a main transporter in the uptake of $^{18}F$-FDG in cancer cells. Increased expression of glucose transporter-1 has been reported in many human cancers. In this study, we investigated the correlation between $^{18}F$-FDG accumulation and expression of GLUT-1 in oral cancer. Materials and Methods: We evaluated 42 patients diagnosed with oral squamous cell carcinoma (OSCC) and malignant salivary gland tumor as confirmed by histology. 42 patients underwent pre-operative $^{18}F$-FDG PET, with the maximum standardized uptake value ($SUV_{max}$) measured in each case. Immunohistochemical staining was done for each histological specimen, and results were evaluated post-operatively according to the percentage (%) of positive area, intensity, and staining score. Results: For OSCC, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For malignant salivary gland tumor, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For OSCC, GLUT-1 was expressed in all 36 cases. GLUT-1 staining score (GSS) increased as T stage of tumor classification increased, with the difference statistically significant. For malignant salivary gland tumor, GLUT-1 expression was observed in all 6 cases; average GSS was significantly higher in patients with cervical lymph node metastasis than that in patients without cervical lymph node metastasis. Average GSS was higher in OSCC ($11.11{\pm}1.75$) than in malignant salivary gland tumor ($5.33{\pm}3.50$). No statistically significant correlation between GSS and $SUV_{max}$ was observed in OSCC or in malignant salivary gland tumor. Conclusion: We found no statistically significant correlation between GSS and $SUV_{max}$ in OSCC or in malignant salivary gland tumor. Studies on the various uses of GLUT during $^{18}F$-FDG uptake and SUV and GLUT as tumor prognosis factor need to be conducted through further investigation with large samples.

Glucose transport 1 deficiency presenting as infantile spasms with a mutation identified in exon 9 of SLC2A1

  • Lee, Hyun Hee;Hur, Yun Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.29-31
    • /
    • 2016
  • Glucose transport 1 (GLUT-1) deficiency is a rare syndrome caused by mutations in the glucose transporter 1 gene (SLC2A1) and is characterized by early-onset intractable epilepsy, delayed development, and movement disorder. De novo mutations and several hot spots in N34, G91, R126, R153, and R333 of exons 2, 3, 4, and 8 of SLC2A1 are associated with this condition. Seizures, one of the main clinical features of GLUT-1 deficiency, usually develop during infancy. Most patients experience brief and subtle myoclonic jerk and focal seizures that evolve into a mixture of different types of seizures, such as generalized tonic-clonic, absence, myoclonic, and complex partial seizures. Here, we describe the case of a patient with GLUT-1 deficiency who developed infantile spasms and showed delayed development at 6 months of age. She had intractable epilepsy despite receiving aggressive antiepileptic drug therapy, and underwent a metabolic workup. Cerebrospinal fluid (CSF) examination showed CSF-glucose-to-blood-glucose ratio of 0.38, with a normal lactate level. Bidirectional sequencing of SLC2A1 identified a missense mutation (c.1198C>T) at codon 400 (p.Arg400Cys) of exon 9.

Effect of submerged culture of Ceriporia lacerata mycelium on GLUT4 protein in db/db mouse (db/db 마우스에서 Ceriporia lacerata 균사체 배양액이 GLUT4 발현에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.893-900
    • /
    • 2015
  • In this study, we evaluated the antidiabetic effect of a submerged culture of Ceriporia lacerata mycelium (CL01) on hematological indices, as well as protein and mRNA expression of the insulin-signaling pathway, in db/db mice. After CL01 was administrated for 4 weeks, blood glucose levels decreased consistently, and plasma insulin and c-peptide levels each decreased by roughly 55.8%, 40% of those in the negative control (p<0.05). With regard to HOMA-IR, an insulin resistance index, insulin resistance of the CL01-fed group improved over that of the negative control group by about 62% (p<0.05). In addition, we demonstrated that the protein expression levels of pIR, pAkt, pAMPK, and GLUT4 and the mRNA expression levels of Akt2, IRS1, and GLUT4 in the muscle cells of db/db mice increased in the CL01-fed group compared to the corresponding levels in the control group. These results demonstrate that CL01 affects glucose metabolism, upregulates protein and gene expression in the insulin-signaling pathway, and decreases blood glucose levels effectively by improving insulin sensitivity. More than 90% of those who suffer from type 2 diabetes are more likely to suffer from hyperinsulinemia, hypertension, obesity, and other comorbidities because of insulin resistance. Therefore, it is possible that CL01 intake could be used as a fundamental treatment for type 2 diabetes by lowering insulin resistance, and these results may prove be useful as basic evidence for further research into the mechanisms of a cure for type 2 diabetes.

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.