• Title/Summary/Keyword: Glucose transporters

Search Result 47, Processing Time 0.03 seconds

The Effect of Glucose and Glucose Transporter on Regulation of Lactation in Dairy Cow

  • Heo, Young-Tae;Park, Joung-Jun;Song, Hyuk
    • Reproductive and Developmental Biology
    • /
    • v.39 no.4
    • /
    • pp.97-104
    • /
    • 2015
  • Glucose is universal and essential fuel of energy metabolism and in the synthesis pathways of all mammalian cells. Glucose is the one of the major precursors of lactose synthesis using glycolysis result in producing milk fat and protein. During the milk fat synthesis, lipoprotein lipase (LPL) and CD36 are required for glucose uptake. Various morecules such as acyl-CoA synthetase 1 (ACSL1) activity of acetyl-CoA synthetase 2 (ACSS2), ACACA, FASN AGPAT6, GPAM, LPIN1 are closely related with milk fat synthesis. Additionally, glucose plays a major role for synthesizing lactose. Activations of lactose synthesize enzymes such as membranebound enzyme, beta-1,4-galactosyl transferase (B4GALT), glucose-6-phosphate dehydrogenase (G6PD) are changed by concentration of glucose in blood resulting change of amount of lactose production. Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose over a plasma membrane. There are 2 types of glucose transporters which consisted facilitative glucose transporters (GLUT); and sodium-dependent transport, mediated by the Na+/glucose cotransporters (SGLT). Among them, GLUT1, GLUT8, GLUT12, SGLT1, SGLT2 are main glucose transporters which involved in mammary gland development and milk synthesis. However, more studies are required for revealing clear mechanism and function of other unknown genes and transporters. Therefore, understanding of the mechanisms of glucose usage and its regulation in mammary gland is very essential for enhancing the glucose utilization in the mammary gland and improving dairy productivity and efficiency.

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Molecular Biology of Glucose Transporter Families (포도당운반체의 분자생물학)

  • 안용호
    • Journal of Life Science
    • /
    • v.4 no.4
    • /
    • pp.170-175
    • /
    • 1994
  • The glucose transport across the mammalian plasma membranes is carried out by members of two distinct gene families, $Na^+$/glucose to transporter (SGLT) and glucose transporters (GLUTs). The energy requiring SGLT utilizes the sodium gradient to transport glucose and galactose against the concentration gradient. The energy independent transport (Facilitative transport) of glucose down the concentration gradient is mediated by the members of GLUTs. The facilitated transport of glucose is saturable, sterospecific and bidirectional across the membrane. To date, 6 kinds of isoforms of facilitative glucose transporters are found. These proteins are expressed in a tissue and cell specific manner, and shows distinct properties that reflect their specific functional roles.

  • PDF

Immunocytochemical Study on the Translocation Mechanism of Glucose Transporters by Insulin

  • Hah, Jong-Sik;Kim, Ku-Ja
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.123-138
    • /
    • 1993
  • The mechanism of insulin action to increase glucose transport is attributed to glucose transporter translocation from intracellular storage pools to the plasma membrane in insulin-sensitive cells. The present study was designed to visualize the redistribution of the glucose transporter by means of an immunogold labelling method. Our data clearly show that glucose transporter molecules were visible by this method. According to the method this distribution of glucose transporters between cell surface and intracellular pool was different in adipocytes. The glucose transporter molecules were randomly distributed at the cell surface whereas the molecules at LDM were farmed as clusters. By insulin treatment the number of homogeneous random particles increased at the cell surface whereas the cluster forms decreased at the intracellular storage pools. It suggests that the active molecules needed to be evenly distributed far effective function and that the inactive molecules in storage pools gathered and termed clusters until being transferred to the plasma membrane.

  • PDF

A Study on the Inhibition of 2-deoxy-D-Glucose Transport of the Endogenous Glucose Transporters in Spodoptera frugiperda Clone 21-AE Cells by Using Hexoses

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.4
    • /
    • pp.487-492
    • /
    • 2005
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. Spodoptera frugiperda Clone 21 (Sf2l) cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, very little is known about the properties of the endogenous sugar transporter(s) in Sf2l cells, although a saturable transport system for hexose uptake has been previously revealed in the Sf cells. In order to further examine the substrate and inhibitor recognition properties of the Sf2l cell transporter, the ability of hexoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. The $K_i's$ for reversible inhibitors were determined from plots of uptake versus inhibitor concentration. Transport was effectively inhibited by D-mannose and D-glucose. Of the hexoses tested, L-glucose had the least effect on 2dGlc transport in the Sf2l cells, indicating that the transport is stereoselective. Unlike the human HepG2 type glucose transport system, D-mannose had a somewhat greater affinity for the Sf2l cell transporter than D-glucose, implying that the hydroxyl group at the C-2 position is not necessary for strong binding. However, epimerization at the C-4 position of D-glucose (D-galactose) resulted in a dramatic decrease in affinity of the hexose for the Sf2l cell transporter. Such a lowering of affinity might be the result of the involvement of the C-4 hydroxyl in hydrogen bonding. It is therefore suggested that Sf2l cells were found to contain an endogenous sugar transport activity that in several aspects resembles the human HepG2 type glucose transporter, although the insect and human transporters do differ in their affinity for cytochalasin B.

  • PDF

Cloning and Distribution of Facilitative Glucose Transporter 2 (SLC2A2) in Pigs

  • Zuo, Jianjun;Huang, Zhiyi;Zhi, Aimin;Zou, Shigeng;Zhou, Xiangyan;Dai, Fawen;Ye, Hui;Feng, Dingyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1159-1165
    • /
    • 2010
  • Glucose is the main energy source for mammalian cells and its absorption is co-mediated by two different families of glucose transporters, sodium/glucose co-transporters (SGLTs) and facilitative glucose transporters (GLUTs). Here, we report the cloning and tissue distribution of porcine GLUT2. The GLUT2 was cloned by RACE and its cDNA was 2,051 bp long (GenBank accession no. EF140874). An AAATAA consensus sequence at nucleotide positions 1936-1941 was located upstream of the poly $(A)^+$ tail. Open reading frame analysis suggested that porcine GLUT2 contained 524 amino acids, with molecular weight of 57 kDa. The amino acid sequence of porcine GLUT2 was 87% and 79.4% identical with human and mouse GLUT2, respectively. GLUT2 mRNA was detected at highest level in porcine liver, at moderate levels in the small intestine and kidney, and at low levels in the brain, lung, muscle and heart. In the small intestine, the highest level was in the jejunum. In conclusion, the mRNA expression of GLUT2 was not only differentially regulated by age, but also differentially distributed along the small intestine of piglets, which may be related to availability of different intestinal luminal substrate concentrations resulting from different food sources and digestibility.

The Hypoglycemic Effects of Acarviosine-Glucose Modulate Hepatic and Intestinal Glucose Transporters In vivo

  • Chung, Mi-Ja;Lee, Young-Soo;Kim, Byoung-Chul;Lee, Soo-Bok;Moon, Tae-Hwa;Lee, Sung-Joon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.851-855
    • /
    • 2006
  • Acarviosine-glucose (AcvGlc) is an ${\alpha}$-glucosidase inhibitor and has similar inhibitory activity to acarbose in vitro. We synthesized AcvGlc by treating acarbose with Bacillus stearothermophilus maltogenic amylase and fed C57BL/6J and db/db mice with diets containing purified AcvGlc and acarbose for 1 week. AcvGlc (50 and 100 mg/100 g diet) significantly reduced plasma glucose and triglyceride levels in db/db mice by 42 and 51 %, respectively (p<0.0001). The hypoglycemic and hypotriglyceridemic effects of AcvGlc were slightly, but significantly, greater than those seen with acarbose treatment (p<0.0001) in C57BL/6J mice. In an oral glucose tolerance test, glucose tolerance was significantly improved at all time points (p<0.01). The expression of two novel glucose transporters (GLUTs), GLUT10 and GLUT12, were examined by Western blot analysis. GLUT10 was markedly increased in the db/db livers. After AcvGlc treatment, the expression of hepatic GLUT10 was decreased whereas intestinal GLUT12 was significantly increased in both strains of mice. Our results show that AcvGlc improves plasma lipid and glucose metabolism slightly more than acarbose. Regulation of hepatic GLUT10 and intestinal GLUT12 may be important in controlling blood glucose levels.

Effects of Mori Folium Ethanol Soluble Fraction on mRNA Expression of glucose transporters, acetyl-CoA carboxylase and leptin (상엽 에탄올가용분획의 글루코스전달체, acetyl-CoA 카복시라제 및 렙틴 mRNA 발현에 미치는 영향)

  • Ryu, Jeong-Wha;Yook, Chang-Soo;Chung, Sung-Hyun
    • YAKHAK HOEJI
    • /
    • v.42 no.6
    • /
    • pp.589-597
    • /
    • 1998
  • Effects of Mori Folium Ethanol Soluble Fraction (MFESF) on mRNA expression of glucose transporters, acetyl-CoA carboxylase (ACC) and leptin were examined in db/db mice. 500 and 1000mg/kg dose for MFESF (designated by SY 500 and SY 1000, respectively) and 5mg/kg dose for acarbose were administered for 6 weeks. Quantitations of glucose transporters (GLUT-2 and GLUT-4), ACC and leptin mRNA were performed by RT-PCR and in vitro transcription with co-amplification of rat ${\beta}$-actin gene as an internal standard. Muscular GLUT-4 mRNA expression in MFESF-treated groups were increased dose dependently. On the other hand, MFESF caused the GLLT-4 and leptin mRNA expressions in adipose tissue to decrease dose dependently, which means that triglyceride synthesis in adipocytes might be decreased and consequently signals adipocytes to inhibit the synthesis and release of leptin. Hepatic ACC mRNA expression in MFESF-treated groups was also decreased. and this may result in lowering of serum triiglyceride level. In contrast, liver GLUT-2 mRNA expressions in MFESF-treated and acarbose groups were increased. Higher rate of glucose uptake into hepatocytes is known to inhibit a phosphoenolpyruvate carboxykinase (PEPCK)-catalyzed reaction, which is a rate-limiting step in gluconeogenesis.

  • PDF

Diabetes, Glucose Transport and Hypoglycaemic Agents

  • Khil, Lee-Yong
    • Biomolecules & Therapeutics
    • /
    • v.12 no.4
    • /
    • pp.202-208
    • /
    • 2004
  • Diabetes mellitus is a complex metabolic derangement with hyperglycaemia being the most characteristic symptom of diabetes. Hyperglycaemia can be caused by an increase in the rate of glucose production by the liver or by a decrease in the rate of glucose use by peripheral tissues. Impaired glucose transport is one of the major factors contributing to insulin resistance in type 2 diabetic patients. The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clearing the post-prandial glucose load. Glucose transport is mediated by specific carriers called glucose transporters (GLUTs). In this article, the functional importance and molecular mechanisms of insulin-induced glucose transport and development of hypoglycaemic agents which increase glucose transport are reviewed.

Hexose Uptake and Kinetic Properties of the Endogenous Sugar Transporter(s) in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.327-332
    • /
    • 2005
  • Sf21 cells become popular as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike human glucose transporters, very little is known about the characteristics of the endogenoussugar transporter(s) in Sf21 cells. Thus, some kinetic properties of the sugar transport system were investigated, involving the uptake of 2-deoxy-D-glucose (2dG1c). In order to obtain a true measure of the initial rate of uptake, the uptake of $[^3H]2dGlc$ from both low $(100{\mu}M)$ and high (10 mM) extracellular concentrations was measured over periods ranging from 30 sec to30 min. The data obtained indicated that the uptake was linear for at least 2 min at both concentrations, suggesting that measurements made over a 1min time course would reflect initial rates of the jexpse uptake. To determine $K_m\;and\;V_{max}$ of the endogenous glucose transporter(s) in Sf21 cells, the uptake of 2dG1c was measured over a range of substrate concentrations $(50{\mu}M\~10mM)$ 2dG1c uptake by the Sf21 cells appeared to involve both saturable and non-saturable (or very low affinity) components. A saturable transport system for 2dG1c was relatively high, the $K_m$ value for uptake being < 0.45 mM. The $V_{max}$ value obtained for 2dG1c transport in the Sf21 cells was about 9.7-folds higher than that reported for Chinese hamster ovary cells, which contain a GLUT1 homologue. Thus, it appeared that the transport activity of the Sf21 cells was very high. In addition, the Sf21 glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter

  • PDF