Browse > Article

Diabetes, Glucose Transport and Hypoglycaemic Agents  

Khil, Lee-Yong (Faculty of Medicine, University of Calgary)
Publication Information
Biomolecules & Therapeutics / v.12, no.4, 2004 , pp. 202-208 More about this Journal
Abstract
Diabetes mellitus is a complex metabolic derangement with hyperglycaemia being the most characteristic symptom of diabetes. Hyperglycaemia can be caused by an increase in the rate of glucose production by the liver or by a decrease in the rate of glucose use by peripheral tissues. Impaired glucose transport is one of the major factors contributing to insulin resistance in type 2 diabetic patients. The ability of insulin to mediate tissue glucose uptake is a critical step in maintaining glucose homeostasis and in clearing the post-prandial glucose load. Glucose transport is mediated by specific carriers called glucose transporters (GLUTs). In this article, the functional importance and molecular mechanisms of insulin-induced glucose transport and development of hypoglycaemic agents which increase glucose transport are reviewed.
Keywords
diabetes; glucose transport; hypoglycemic agent; insulin; phophatitylinositol 3-kinase; TC10;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yoon, J.W. and Jun, H.S. (1998). Insulin-dependent diabetes mellitus. In Encyclopedia ofImmunology (M.M. Roitt and PJ. Delves, Eds.), pp. 1390-1398. Academic Press, London
2 Yoon, J.W. and Jun, H.S. (2001). Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes. Ann. N. Y. Acad. Sci. 928, 200-211   DOI
3 Zhang, B., Salituro, G., Szalkowski, D., Li, Z., Zhang, Y, Royo, I., Vilella, D., Diez, M.T., Pelaez, F., Ruby, C., Kendall, R.L., Mao, X., Griffm, P., Calaycay, J., Zierath, J.R, Heck, J.V., Smith, R.G. and Moller, D.E. (1999). Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science. 284,974-977   DOI   ScienceOn
4 Sarges, R, Hank, R.F., Blake, J.F., Bordner, J., Bussolotti, D.L., Hargrove, D.M., Treadway, J.L. and Gibbs, E.M. (1996). Glucose transport-enhancing and hypoglycemic activity of 2-methyl-2-phenoxy-3-phenylpropanoic acids. J. Med. Chem. 39, 4783-4803   DOI   ScienceOn
5 Shepherd, P.R., Withers, D.J. and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333,471-490   DOI
6 Tsuneki, H., Ishizuka, M., Terasawa, M., Wu, J.B., Sasaoka, T. and Kimura, I. (2004). Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol. 4, 18   DOI   ScienceOn
7 UK Prospective Diabetes Study (UKPDS) Group. (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837-853   DOI   ScienceOn
8 Ahn, M.Y., Katsanakis, K.D., Bheda, F. and Pillay, T.S. (2004). Primary and essential role of the adaptor protein APS for recruitment of both c-Cbl and its associated protein CAP in insulin signaling. J. BioI. Chem. 279,21526-21532   DOI   ScienceOn
9 Zimmerman, B.R. (1997). Sulfonylureas. Endocrinol. Metab. Clin. NorthAm. 26, 511-521   DOI   ScienceOn
10 Ahmed, Z., Smith, B.J. and Pillay, T.S. (2000). The APS adapter protein couples the insulin receptor to the phosphorylation of c-Cbl and facilitates ligand-stimulated ubiquitination of the insulin receptor. FEBS Lett. 475, 31-34   DOI   ScienceOn
11 Alessi, D.R, James, S.R, Downes, C.P., Holmes, A.B., Gaffney, P.R, Reese, C.B. and Cohen, P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curro BioI. 7,261-269   DOI   ScienceOn
12 Arribas, M., Valverde, A.M., Burks, D., Klein, J., Farese, R.Y., White, M.F and Benito, M. (2003). Essential role of protein kinase C zeta in the impairment of insulin-induced glucose transport in IRS-2-deficient brown adipocytes. FEBS Lett. 536, 161-166   DOI   ScienceOn
13 Baumann, C.A, Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E. and Saltiel, A.R. (2000). CAP defines a second signalling pathway required for insulinstimulated glucose transport. Nature. 407,202-207   DOI   ScienceOn
14 Attele, A.S., Zhou, Y.P., Xie, J.T., Wu, J.A, Zhang, L., Dey, L., Pugh, W., Rue, P.A, Polonsky, K.S. and Yuan, C.S. (2002). Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes. 51, 1851-1858   DOI   ScienceOn
15 Bailey, C.J. and Turner, R.C. (1996). Metformin. N. Engl. J. Med. 334, 574-579   DOI   ScienceOn
16 Baldwin, S.A (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim. Biophys. Acta. 1154, 17-49   DOI   ScienceOn
17 Carvalho, E, Schellhorn, S.E., Zabolotny, J.M., Martin, S., Tozzo, E., Peroni, O.D., Houseknecht, K.L., Mundt, A., James, D.E. and Kahn, B.B. (2004). GLUT4 overexpression or deficiency in adipocytes of transgenic mice alters the composition of GLUT4 vesicles and the subcellular localization of GLUT4 and insulinresponsive aminopeptidase. J. BioI. Chem. 279, 21598-21605   DOI   ScienceOn
18 Chiang, S.H., Baumann, C.A., Kanzaki, M., Thurmond, D.C., Watson, R.T., Neudauer, C.L., Macara, I.G., Pessin, J.E. and Saltiel, A.R (2001). Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TCIO. Nature. 410, 944-948   DOI   ScienceOn
19 Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664   DOI   ScienceOn
20 Choi, S.B., Wha, J.D. and Park, S. (2004). The insulin sensitizing effect of homoisoflavone-enriched fraction in Liriope platyphylla Wang et Tang via PI3-kinase pathway. Life Sci. 75, 2653-2664   DOI   ScienceOn
21 Ciaraldi, T.P., Huber-Knudsen, K., Hickman, M. and Olefsky, J.M. (1995). Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents. Metabolism. 44, 976-981   DOI   ScienceOn
22 Ciaraldi, T.P., Kong, A.P., Chu, N.Y., Kim, D.D., Baxi, S., Loviscach, M., Plodkowski, R., Reitz, R., Caulfield, M., Mudaliar, S. and Henry, R.R. (2002). Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes. 51, 30-36   DOI   ScienceOn
23 Czech, M.P. and Corvera, S. (1999). Signaling mechanisms that regulate glucose transport. J. Bioi. Chem. 274, 1865-1868   DOI   ScienceOn
24 DeFronzo, R.A. (1988). The triumvirate: $\beta$-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 37,667-687   DOI
25 Fajans, S.S and Conn, J.W. (1965). Prediabetes, subclinical diabetes, and latent clinical diabetes: interpretation, diagnosis and treatment. In: On the Nature and Treatment of Diabetes (D.S. Leibel and G.S. Wrenshall, Eds.), pp. 641-656. Excerpta Medica, Amsterdam
26 Farese, R.V., Ishizuka, T., Standaert, M.L. and Cooper, D.R. (1991). Sulfonylureas activate glucose transport and protein kinase C in rat adipocytes. Metabolism. 40, 196-200   DOI   ScienceOn
27 Ginsberg, H., Kimmerling, G., Olefsky, J.M. and Reaven, G.M. (1975). Demonstration of insulin resistance in untreated adult onset diabetic subjects with fasting hyperglycemia. J. Clin. Invest. 55, 454-461   DOI
28 Guyton, A.C. and Hall, J.E. (1996). Textbook of medical physiology. Elsevier Science
29 Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, Y., Chandramouli, V., Inzucchi, S.E., Schumann, W.C., Petersen, KF., Landau, B.R and Shulman, G.I. (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 49, 2063-2069   DOI   ScienceOn
30 Hill, M.M., Clark, S.F., Tucker, D.F., Birnbaum, M.J., James, D.E. and Macaulay, S.L. (1999). A role for protein kinase Bbeta/Akt2 in insulin-stinmlated GLUT4 translocation in adipocytes. Mol. Cell Biol. 19,7771-7781   DOI
31 Inzucchi, S.E. (2002). Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287, 360-372   DOI   ScienceOn
32 James, D.E. and Piper, R.C. (1994). Insulin resistance, diabetes, and the insulin-regulated trafficking of GLUT-4. J. Cell Biol. 126, 1123-1126   DOI   ScienceOn
33 Jun, H., Bae, H.Y., Lee, B.R., Koh, K.S., Kim, Y.S., Lee, K.W., Kim, H. and Yoon, J. (1999). Pathogenesis of non-insulindependent (type II) diabetes mellitus (NIDDM) - genetic predisposition and metabolic abnormalities. Adv. Drug Deliv. Rev. 35,157-177   DOI   ScienceOn
34 Kahn, B.B. (1992). Facilitative glucose transporters: regulatory mechanisms and dysregulations in diabetes. J. Clin. Invest. 89, 1367-1374   DOI
35 Khil, L.Y., Cheon, A.J., Chang, T.S. and Moon, C.K (1997). Effects of calcium on brazilin-induced glucose transport in isolated rat epididymal adipocytes. Biochem. Phannacol. 54, 97-101   DOI   ScienceOn
36 Khil, L.Y, Han, S.S., Kim, S.G., Chang, T.S., Jeon, S.D., So, D.S. and Moon, C.K (1999). Effects of brazilin on GLUT4 recruitment in isolated rat epididymal adipocytes. Biochem. Phannacol. 58, 1705-1712   DOI   ScienceOn
37 DeFronzo, R.A., Gunnarsson, R., Bjorkman, O., Olsson, M. and Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J. Clin. Invest. 76, 149-155   DOI
38 Kotani, K., Carozzi, A.J., Sakaue, H., Hara, K, Robinson, L.J., Clark, S.F., Yonezawa, K, James, D.E. and Kasuga, M. (1995). Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-Ll adipocytes. Biochem. Biophys. Res. Commun. 209, 343-348   DOI   ScienceOn
39 Kruszynska, Y.T. and Olefsky, J.M. (1996). Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J. Investig. Med. 44,413-428
40 Lane, M.D., Flores-Riveros, J.R., Hresko, Re., Kaestner, K.H., Liao, K, Janicot, M., Hoffman, R.D., McLenithan, J.C., Kastelic, T. and Christy, R.J. (1990). Insulin-receptor tyrosine kinase and glucose transport. Diabetes Care. 13, 565-575   DOI   ScienceOn
41 Ducluzeau, P.H., Fletcher, L.M., Vidal, H., Laville, M. and Tavare, J.M. (2002). Molecular mechanisms of insulin-stimulated glucose uptake in adipocytes. Diabetes Metab. 28, 85-92
42 Maier, V.H., Melvin, D.R., Lister, C.A., Chapman, H., Gould, G.W. and Murphy, G.J. (2000). v- and t-SNARE protein expression in models of insulin resistance: normalization of glycemia by rosiglitazone treatment corrects overexpression of cellubrevin, vesicle- associated membrane protein-2, and syntaxin 4 in skeletal muscle of Zucker diabetic fatty rats. Diabetes. 49, 618-625   DOI   ScienceOn
43 Martin, S., Rarnm, G., Lyttle, C.T., Meerloo, T., Stoorvogel, W. and James, D.E. (2000). Biogenesis of insulin-responsive GLUT4 vesicles is independent of brefeldin A-sensitive trafficking. Traffic. I, 652-660   DOI   ScienceOn
44 Mastick, C.C., Brady, M.J. and Saltiel, A.R. (1995). Insulin stimulates the tyrosine phosphorylation of caveolin. J. Cell Biol. 129,1523-1531   DOI   ScienceOn
45 Moore, M.C., Cherrington, A.D. and Wasserman, D.H. (2003). Regulation of hepatic· and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metab. 17, 343-364   DOI   ScienceOn
46 Meyer, C., Dostou, J.M., Welle, S.L. and Gerich, J.E. (2002). Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am. J. Physiol. Endocrinol. Metab. 282, E419-427   DOI
47 Millar, C.A, Shewan, A, Hickson, G.R., James, D.E. and Gould, G.W. (1999). Differential regulation of secretory compartments containing the insulin-responsive glucose transporter 4 in 3T3Ll adipocytes. Mol. Biol. Cell. 10, 3675-3688   DOI
48 Moller, D.E. (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 414:821-827   DOI   ScienceOn
49 Jiang, T., Sweeney, G., Rudolf, M.T., Klip, A., Traynor-Kaplan, A and Tsien, R.Y. (1998). Membrane-permeant esters of phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 11017-11024   DOI   ScienceOn
50 Pirart, J. (1978). Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973. Diabetes Care. 1, 168-188   DOI
51 Randhawa, V.K., Bilan, P.J., Khayat, Z.A., Daneman, N., Liu, Z., Rarnlal, T., Volchuk, A., Peng, X..R., Coppola, T., Regazzi, R.,Trimble, W.S. and Klip, A (2000). VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol. Biol. Cell. 11, 2403-2417   DOI
52 Rea, S. and James, D.E. (1997). Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes. 46, 1667-1677   DOI   ScienceOn
53 Rea, S., Martin, L.B., McIntosh, S., Macaulay, S.L., Ramsdale, T., Baldini, G. and James, D.E. (1998). Syndet, an adipocyte target SNARE involved in the insulin-induced translocation of GLUT4 to the cell surface. J. Biol. Chem. 273, 18784-18792   DOI   ScienceOn
54 Rifkin, H. and Porte, D. (1997). Diabetes Mellitus, Theory and Practice. Elsevier Science
55 Reaven, G.M. (1983). Insulin resistance in noninsulin-dependent diabetes mellitus. Does it exist and can it be measured? Am. J. Med. 74, 3-17
56 Ribon, V. and Saltiel, A R (1997). Insulin stimulates tyrosine phosphorylation of the proto-oncogene product of c-Cbl in 3T3-Ll adipocytes. Biochem. J. 324, 839-845   DOI
57 Ribon, V., Printen, J.A., Hoffman, N.G., Kay, B.K. and Saltiel, A.R. (1998). A novel, multifuntional c-Cbl binding protein in insulin receptor signaling in 3T3-Ll adipocytes. Mol. Cell Biol. 18, 872-879   DOI
58 Liu, M.-L., Gibbs, E.M., McCoid, S.C., Milici, A.J., Stukenbrok, H.A., McPherson, R.K., Treadway, J.L. and Pessin, J.E. (1993). Transgenic mice expressing the human GLUT4/muscle-fat facilitative glucose transporter protein exhibit efficient glycemic control. Proc. Natl. Acad. Sci. USA. 90, 11346-11350   DOI   ScienceOn
59 Shintani, M., Nishimura, H., Yonemitsu, S., Ogawa, Y, Hayashi, T., Hosoda, K., Inoue, G. and Nakao, K. (2001). Troglitazone not only increases GLUT4 but also induces its translocation in rat adipocytes. Diabetes. 50, 2296-2300   DOI   ScienceOn
60 Simpson, F, Whitehead, J.P. and James, D.E. (2001). GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic. 2, 2-11   DOI   ScienceOn
61 Standaert, M,L., Bandyopadhyay, G., Kanoh, Y., Sajan, M.P. and Farese, R.V. (2001). Insulin and PIP3 activate PKC-zeta by mechanisms that are both dependent and independent of phosphorylation of activation loop (T41O) and autophosphorylation (T560) sites. Biochemistry. 40, 249-255   DOI   ScienceOn
62 Strowski, M.Z., Li, Z., Szalkowski, D., Shen, X., Guan, X.M., Juttner, S., Moller, D.E. and Zhang, B.B. (2004). Small-molecule insulin mimetic reduces hyperglycemia and obesity in a nongenetic mouse model of type 2 diabetes. Endocrinology. 145, 5259-5268   DOI   ScienceOn
63 Pagliassotti, M.J. and Horton, T.J. (1994). Hormonal and neural regulation of hepatic glucose uptake. In The Role of the Liver in Maintaining Glucose Homeostasis (M.J. Pagliassotti, S. Davis and A.D. Cherrington Eds.), pp. 45-70. R.G. Landis, Austin, TX
64 Tanner, L.I. and Lienhard, G.E. (1987). Insulin elicits a redistribution of transferrin receptors in 3T3-L1 adipocytes through an increase in the rate constant for receptor externalization. J. Biol. Chem. .262, 8975-8980
65 Tozzo, E., Shepherd, P.R., Gnudi, L. and Kahn, B.B. (1993). Increased basal and insulin-stimulated glucose transport and metabolism in isolated adipocytes from transgenic mice overexpressing GLUT4 selectively in fat. Diabetes. 42 (Suppl. 1), 13A
66 MUdaliar, S. and Henry, R.R. (2001). New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu. Rev. Med. 52, 239-257   DOI   ScienceOn
67 Wallberg-Henriksson, H. and Zierath, J.R. (2001). GLUT4: a key player regulating glucose homeostasis? Insights from transgenic and knockout mice (review). Mol. Membr. Biol. 18,205-211   DOI   ScienceOn
68 Watson, R.T., Shigematsu, S., Chiang, S.H., Mora, S., Kanzaki, M., Macara, I.G., Saltiel, A.R and Pessin, J.E. (2001). Lipid raft microdomain compartmentalization of TCIO is required for insulin signaling and GLUT4 translocation. Cell. BioI. 154, 829-840   DOI   ScienceOn
69 World Heath Organization Study Group (1985). Diabetes mellitus. WHO Tech. Rep. Ser. 727, 1-113
70 Wu, L.Y, Juan, C.C., Hwang, L.S., Hsu, Y.P., Ho, P.H. and Ho, L.T. (2004). Green tea supplementation ameliorates insulin resistance and increases glucose transporter IN content in a fructose-fed rat model. Eur. J. Nutr. 43, 116-124   DOI   ScienceOn