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Hexose Uptake and Kinetic Properties of the Endogenous
Sugar Transporter(s) in Spodoptera frugiperda Clone 21-AE Cells
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Sf21 cells become popular as the host permissive cell line to support the baculovirus AcNPV replication and protein
synthesis. The cells grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, strongly
suggesting the presence of endogenous glucose transporters. However, unlike human glucose transporters, very little is
known about the characteristics of the endogenous sugar transporter(s) in Sf21 cells. Thus, some kinetic properties of
the sugar transport system were investigated, involving the uptake of 2-deoxy-D-glucose (2dGlc). In order to obtain a
true measure of the initial rate of uptake, the uptake of [*H]2dGlc from both low (100 uM) and high (10 mM) extracellular
concentrations was measured over periods ranging from 30 sec to 30 min. The data obtained indicated that the uptake
was linear for at least 2 min at both concentrations, suggesting that measurements made over a 1 min time course would
reflect initial rates of the hexose uptake. To determine Ky, and Vi, of the endogenous glucose transporter(s) in Sf21
cells, the uptake of 2dGlc was measured over a range of substrate concentrations (50 uM~10 mM). 2dGlc uptake by
the Sf21 cells appeared to involve both saturable and non-saturable (or very low affinity) components. A saturable
transport system for 2dGlc was relatively high, the K}, value for uptake being < 0.45 mM. The ¥, value obtained for
2dGlc transport in the Sf21 cells was about 9.7-folds higher than that reported for Chinese hamster ovary cells, which
contain a GLUT1 homologue. Thus, it appeared that the transport activity of the Sf21 cells was very high. In addition,
the Sf21 glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human
erythrocyte glucose transporter
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(2 mM-iodoacetamide, 0.2 mM-phenylmethanesulphony] fluo-
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3. Hexose transport assay

AHEE tritiated sugarsE -2 2-(1,2-H)-deoxy-D-glucose (30.2
Ci/mmol)2HL-[1-"H(N)]-glucose (10.7 Ci/mmol, NEN)°|t}, Sf-
21 M2 2-deoxy-D-glucose (2dGlc) uptake 78L& A=
=3 Z‘i 5 %, phosphate-buffered saline (PBS, 10 mM sodium
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o Sofl ZFE TS AASGA o o 714 gl
BBt AHE-8HIEL Hexose transport assay: 7+eFs] A
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gto] HAbs & ST BE ARe A W £33 9)

(BEET} 10% o|81e] o)) Hagto s TS

¥ & Microman

4. Cytochalasin B binding assay

Cytochalasin B bindinge Sf21 AlZe] WASHE glucose
transporter(syE ¢ functional assay2A] ]85t} Zoceoli
o] el wit (1978) F 5 40 aM2) [4-°H]} cytochalasin
BE A3t FYFAT (equilibrium dialysis) O3 233}
Fii=

4 2t
1. Hexose uptakedl CHE} time course

Sf21 A2 ST FF 58S A st 2-
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A7 44 (linear) ol = 713ES AA] H8) e
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cellular X% (Fig. 2)ollA 2dGlce] HHE 305904 3082
AR 717 B ZAEATE Fig. 1914 B 4 gd5o] we =
EoA Aok 2% U2 F AF 7T linear 3Tk EF Fig.
28] & (10 mM) extracellular T LA FAFE 2olx 22
S ' AR Fig. 13} 32E0] linear 3131 whelbA] 1823}
o AX % HqF =A (uptake measurement) M ¥2] S&

2 extra-
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Fig. 1. Time course of 2-deoxy-D-glucose uptake by Sf21 cells
from a low extracellular concentration of sugar. Transport was
carried out in the presence of 100 pM 2dGle, as described in
Materials and Methods. After the times indicated, uptake was ter-
minated and the radioactivity accumulated was determined by
scintillation counting. Each data point on the graph represents the
mean of triplicate estimations. The data was corrected for the zero
time uptake and converted into pmol/min/10° cells. The data points
representing for some time intervals (9~29 min) were omitted for
convenience.
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Fig. 2. Time course of 2-deoxy-D-glucose uptake by Sf21 cells
from a high extracellular concentration of sugar. Transport was
carried out in the presence of 10 mM 2dGlc, as described in the
Materials and methods. Each data point on the graph represents
the mean of triplicate estimations. The data was corrected for the
zero time uptake and converted into pmol/min/10° cells.
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2. Sf21 cell sugar transporter@| kinetic parameters

Sf21 A Eol WAEE 3 442 K, (the half-saturation

concentration) ¥} V.. (the maximum velocity)E 2437

Initial Rate of Uptake
{dpmx10°/min/10° cells)
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Fig. 3. Uptake of 2-deoxy-D-glucose in Sf21 cells. Transport
was carried out as described in Materials and Methods. Shown is
a representative experiment in which increasing concentrations of
2dGlc were added to the extracellular medium of the cells. The
concentration of radiolabelled 2dGlc used was held constant.

Each data point is the mean of triplicate estimations. The K, for
2dGlc transport was determined as described in the text.
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Fig. 4. Determination of the maximal rate of transport (V).
The V. was determined as described in the text. The curve was
produced by using the data points upto 1 mM of 2dGlc, which
approach saturation. Each data point on the graph represents the
mean of triplicate estimations.

gl A3 whHol] el E hexose transport assay B ol IE]-E]-
50 uM~10 mM9l| o2& 712 T% B WellA 2dGle A%

£ SAsIAT Fig. 3~59 Wehd ZijolAl sp1 A% 2
dGle uptake™= E3}A|Z 4= U= (saturable) A& (Fig. 3 and
HIt XA = 9lE (non-saturable) =T - W2 3}
Aol A& (Fig 5) & U8 ¥dske 2oz Uehyith o9}
T URdoR X/5EY I F4A9 7]Ho| ohd
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Fig. 5. Determination of the maximal rate of transport (V). .

The V. was determined as described in the text. The curve was
produced by using the data points at high concentrations (> 1 mM)
of 2dGlc. The line drawn through experimental points at high con-
centrations (> mM) of substrate is straight and represents the non-
saturable component. Each data point on the graph represents the
mean of triplicate estimations.

A4 e AR et 2dGle transport A&l thE WA
Feho 24 9] L-glucose AH8-2 L-sugar?] B} I 44z
22 L-glucose®} 2dGles} Atole] 81312 Zpo]H 07 13|

iAol transportel] N K Vi, B oFdl
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= uptake %%, S = 7|2 F%, M = uptake process®]
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Viax * S
Vi= + M-S @
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V, = inhibitor &2} s}l A uptake F=, 1=
K, = inhibition A+ 2813 ThE 7]ZE-S g4 (1)llAl
A 59t} Uptake A FollA HAMY EXH 9 (radiolabeled
sugan)?| FET _‘__,%b:} Fig. 32 radiolabel uptakeol] ot
unlabeled sugar 559 233 Z=golt}h K, & o A5ES
ENZFITTERE ©|-§& W4 ) &3t doimich 1 25
unlabeled sugarell ™8+ apparent K; 1A} 2dGle uptakeol|
& K, 2 376136 pMOIU Tt V= 2dGle uptaked] %7] &
Lo i3 714 Fxof dlE A5 (Fig 499 F2 FEoA
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Fig. 6. Transport of ["HJL-glucose by Sf21 cells. Uptake was
carried out as described in the Materials and Methods. Shown is a
representative experiment in which increasing concentrations of
L-glucose were added to the extracellular medium of the cells.
Each data point is the mean of triplicate estimations.

Table 1. Cytochalasin B binding to Sf21 cell membranes

Sample Cytochalasin B (B/F)
(Img/ml) ) p_Glucose (+) D-Glucose *Specific B/F

Sf21-AE cells 0.052 0.051 0.001
membranes

Erythrocyte 8.048 0.425 7.623
membranes

Membranes of Sf21 cell were prepared as described in the Ma-
tetials and Methods. The assay for cytochalasin B binding activity
of membrane samples was performed by equilibrium dialysis
using 40 nM- [PH]eytochalasin B, in the absence () or presence
(+) of 400 mM D-glucose, as described in Zoccoli et al (1978).
Cytochalasin B binding activity (*) was calculated as described
previously (Gorga and Lienhard, 1981). B/F = [bound cytochalasin
B] / [free cytochalasin B]

9] 2dGlc curve slope AHE. (Fig. 55 ENZFITTEREZ -85}
o] AAratgich AR V.= 416125 pmolimin/10° cells ©]
At

3. Cytochalasin B binding to Sf21 cell membranes

Cytochalasin B bindingS GLUT19] &g AMajAelt}. 3
HEA (equilibrium dialysis) ¥ (Zoccoli et al.,, 1978; Baldwin
et al, 1982)2 o83l F% 40 nM9] cytochalasin BE A&
3le] 3HH =4 3199tk Bound cytochalasin Bl t§h Free
cytochalasin B2} H]& B/F)y 7154 e 3 44 5
ZA-d| & Hx7}l @ 4 o} (Gorga and Lienhard, 1981).
Table 10 .oFd vle} 2o] 821 Al gk cytochalasin B
A 4L 1 mgml AlE F 0001 ©J$2 GLUTIS &+
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H
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