Browse > Article
http://dx.doi.org/10.5713/ajas.2010.90551

Cloning and Distribution of Facilitative Glucose Transporter 2 (SLC2A2) in Pigs  

Zuo, Jianjun (College of Animal Science, South China Agricultural University)
Huang, Zhiyi (College of Animal Science, South China Agricultural University)
Zhi, Aimin (College of Animal Science, South China Agricultural University)
Zou, Shigeng (College of Animal Science, South China Agricultural University)
Zhou, Xiangyan (College of Animal Science, South China Agricultural University)
Dai, Fawen (College of Animal Science, South China Agricultural University)
Ye, Hui (College of Animal Science, South China Agricultural University)
Feng, Dingyuan (College of Animal Science, South China Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.23, no.9, 2010 , pp. 1159-1165 More about this Journal
Abstract
Glucose is the main energy source for mammalian cells and its absorption is co-mediated by two different families of glucose transporters, sodium/glucose co-transporters (SGLTs) and facilitative glucose transporters (GLUTs). Here, we report the cloning and tissue distribution of porcine GLUT2. The GLUT2 was cloned by RACE and its cDNA was 2,051 bp long (GenBank accession no. EF140874). An AAATAA consensus sequence at nucleotide positions 1936-1941 was located upstream of the poly $(A)^+$ tail. Open reading frame analysis suggested that porcine GLUT2 contained 524 amino acids, with molecular weight of 57 kDa. The amino acid sequence of porcine GLUT2 was 87% and 79.4% identical with human and mouse GLUT2, respectively. GLUT2 mRNA was detected at highest level in porcine liver, at moderate levels in the small intestine and kidney, and at low levels in the brain, lung, muscle and heart. In the small intestine, the highest level was in the jejunum. In conclusion, the mRNA expression of GLUT2 was not only differentially regulated by age, but also differentially distributed along the small intestine of piglets, which may be related to availability of different intestinal luminal substrate concentrations resulting from different food sources and digestibility.
Keywords
GLUT2; Molecular Cloning; Small Intestine; Pig;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Seki, Y., J. R. Berggren, J. A. Houmard and M. J. Charron. 2006. Glucose transporter expression in skeletal muscle of endurance-trained individuals. Med. Sci. Sports Exerc. 38:1088-1092.   DOI   ScienceOn
2 Scheepers, A., H. G. Joost and A. Schurmann. 2004. The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. JPEN J. Parenter. Enteral. Nutr. 28:364-371.   DOI
3 Thorens, B., H. K. Sarkar, H. R. Kaback and H. F. Lodish. 1988. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281-290.   DOI   ScienceOn
4 Uldry, M., M. Ibberson, M. Hosokawa and B. Thorens. 2002. GLUT2 is a high affinity glucosamine transporter. FEBS Lett. 524:199-203.   DOI   ScienceOn
5 Wood, I. S. and P. Trayhurn. 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89:3-9.
6 Wright, E. M., D. D. F. Loo, B. A. Hirayama and E. Turk. 2004. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiol. 19:370-376.   DOI   ScienceOn
7 Zhao, F. Q. and A. F. keating. 2007. Functional properties and genomics of glucose transporters. Curr. Genomics 8(2):113-128.   DOI
8 Zhou, L., E. V. Cryan, M. R. D'Andrea, S. Belkowski, B. R. Conway and K. T. Demarest. 2003. Human cardiomyocytes express high level of Na+/glucose cotransporter 1 (SGLT1). J. Cell Biochem. 90:339-346.   DOI   ScienceOn
9 Fukumoto, H., S. Seino, H. Imura, Y. Seino, R. L. Eddy and Y. Fukushima. 1988. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. 85:5434-5438.   DOI
10 Gilbert, E. R., H. Li, D. A. Emmerson, K. E. Jr. Webb and E. A. Wong. 2007. Developmental regulation of nutrient transporter and enzyme mRNA abundance in the small intestine of broilers. Poult. Sci. 86:1739-1753.   DOI
11 Gouyon, F., L. Caillaud, V. Carriere, C. Klein, V. Dalet and D. Citadelle. 2003. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice. J. Physiol. 552:823-832.   DOI   ScienceOn
12 Joost, H. and B. Thorens. 2001. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol. Membr. Biol. 18:247-256.   DOI
13 Kellett, G. L. and E. Brot-Laroche. 2005. Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes 54:3056-62.   DOI   ScienceOn
14 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.   DOI   ScienceOn
15 Medina, R. A., E. Baker, B. Philips, A. Woollhead and D. Baines. 2006. Glucose transport in H441 lung epithelial cells. FASEB J. 20(4):A348-A348.
16 Arluison, M., M. Quignon, P. Nguyen, B. Thorens, C. Leloup and L. Penicaud. 2004. Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain-an immunohistochemical study. J. Chem. Neuroanat. 28:117-136.   DOI   ScienceOn
17 Natalizio, B. J., L. C. Muniz, G. K. Arhin, J. Wilusz and C. S. Lutz. 2002. Upstream elements present in the 3'-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J. Biol. Chem. 277:42733-42740.   DOI   ScienceOn
18 Owens, J. A., M. L. Harland, M. J. De Blasio, K. L. Gatford, D. Crosby, A. Hoey and J. S. Robinson. 2007. Restriction of placental and fetal growth reduces expression of insulin signalling and glucose transporter genes in skeletal muscle of young lambs. Early Hum. Dev. 83:S134-S134.
19 Affleck, J. A., P. A. Helliwell and G. L. Kellett. 2003. Immunocytochemical detection of GLUT2 at the rat intestinal brush-border membrane. J. Histochem. Cytochem. 51:1567-1574.   DOI
20 Bell, G. I., C. F. Burant, J. Taked and G. W. Gould. 1993. Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268:19161-19164.
21 Cherbuy, C., B. Darcy-Vrillon, L. Posho, P. Vaugelade, M. T. Morel and F. Bernard. 1997. GLUT2 and hexokinase control proximodistal gradient of intestinal glucose metabolism in the newborn pig. Am. J. Physiol. Gastrointest. Liver Physiol. 272:G1530-1539.
22 Castillo, J., D. Crespo, E. Capilla, M. Diaz, F. Chauvigne, J. Cerda and J. V. Planas. 2009. Evolutionary structural and functional conservation of an ortholog of the GLUT2 glucose transporter gene (SLC2A2) in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297:R1570-1581.   DOI   ScienceOn