• 제목/요약/키워드: Glucose transporter

검색결과 205건 처리시간 0.03초

가시오가피 추출물의 항당뇨 활성 및 GLUT4 유전자 발현에 미치는 영향 (Effects of Antidiabetic and GLUT4 gene Expression of Acanthopanax senticosus Extracts)

  • 정의수;박종필;최한;장경순;강신호;강세찬;지옥표
    • 생약학회지
    • /
    • 제39권3호
    • /
    • pp.228-232
    • /
    • 2008
  • Antidiabetic effects of an aqueous and solvent extract prepared from the root, stem and fruit parts of Acanthopanax senticosus, were investigated in experimental Streptozotocin (STZ)-induced diabetic rats model. The n-butanol and water extracts of A. senticosus were orally administrated once a day for 6 days. The n-butanol extracts of fruit (FB) showed highest efficiency than other groups (water extracts of stem, root and fruit; butanol extracts of stem, root) on serum glucose values in the STZ-induced diabetic rats. We have studied gene expression of glucose transporter genes in C2C12 skeletal muscle cell line during differentiation treated by the n-butanol and water extracts of A. senticosus, SW, RW, FW, SB, RB and FB. The GLUT4 gene was high expressed by FB treatment. These findings suggest that FB of A. senticosus have GLUT4 gene expression activity for glucose homeostasis and may have beneficial effects on blood glucose lowering in the diabetic patients.

Inhibition of GLUT-1 Expressed in Xenopus laevis Oocytes by Acetoxyscirpendiol of Paecilomyces tenuipes

  • Lee, Dong-Hee;Kim, Ha-Won
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.74-78
    • /
    • 2004
  • Paecilomyces tenuipes, a caterpillar fungus, contains many health-promoting ingredients. Recent reports indicate that consumption of P. tenuipes helps reducing blood sugar content for diabetes. Mechanism for reduction in the circulatory sugar content, however, still remains least understood. Methanolic extraction of P. tenuipes (MPT) was prepared and acetoxyscirpendiol (ASD) was subsequently purified limn MPT. Glucose transporter-1 (GLUT-1) was expressed in the Xenopus oocytes and the effect of MPT or ASD on the expressed GLUT-1 was analyzed according to the uptake of 2-dideoxy-D-glucose (2-DOG). MPT was shown to inhibit GLUT-1 activity significant1y compared to the non-treated control. In the presence of ASD and its derivatives, GLUT-1 activity was greatly inhibited in a dose-dependent manner. Among ASD and its derivatives, AS-1 showed most significant inhibition. Taken together, these results strongly indicate that ASD in P. tenuipes may serve as a functional substance in lowering blood sugar in the circulatory system. ASD and its derivatives can be utilized as inhibitors of GLUT-1.

무막줄기세포추출물의 3T3-L1 세포에서 포도당 흡수 촉진 효과 (Membrane Free Stem Cell Extract from Adipose Tissue Enhances Glucose Uptake in 3T3-L1 Cells)

  • 김지현;김민정;박혜숙;김영실;조은주
    • 한방비만학회지
    • /
    • 제19권2호
    • /
    • pp.89-96
    • /
    • 2019
  • Objectives: We investigated whether membrane free stem cell extract from adipose tissue (MFSCE) has anti-diabetic effect. Methods: To determine glucose uptake effect of MFSCE, we carried out glucose uptake assay in 3T3-L1 adipocytes. The regulatory mechanisms of MFSCE on glucose uptake were examined by Western blot analysis. Results: When MFSCE was treated to adipocytes at the concentration of 0.5, 1, 2.5, and 5 ㎍/mL, 2-deoxyglucose-6-phosphate uptake was elevated approximately 1.8-fold compared to cells not treated with MFSCE. It indicated that MFSCE enhances glucose uptake in 3T3-L1 adipocytes. In addition, MFSCE reduced phosphorylation of insulin receptor substrate-1 at serine 307 and induced Akt and glucose transporter 4 protein expressions that were related to insulin signaling. Furthermore, MFSCE regulated adenosine monophosphate-activated protein kinase (AMPK) pathway by increases of increase phosphorylation of AMPK and acetyl-CoA carboxylase that were related to AMPK pathway. Conclusions: These results indicated that MFSCE promotes glucose uptake via modulation of insulin signaling and AMPK pathway. Therefore, MFSCE could be a promising agent for treatment of diabetes mellitus.

Glycolytic and oxidative muscles under acute glucose supplementation differ in their metabolic responses to fatty acyl-CoA synthetase gene suppression

  • Jung, Yun Hee;Bu, So Young
    • Journal of Nutrition and Health
    • /
    • 제55권1호
    • /
    • pp.70-84
    • /
    • 2022
  • Purpose: Skeletal muscles display significant heterogeneity in metabolic responses, owing to the composition of metabolically distinct fiber types. Recently, numerous studies have reported that in skeletal muscles, suppression of genes related to fatty acid channeling alters the triacylglycerol (TAG) synthesis and switches the energy substrates. However, such responses may differ, depending on the type of muscle fiber. Hence, we conducted in vitro and animal studies to compare the metabolic responses of different types of skeletal muscle fibers to the deficiency of fatty acyl-CoA synthetase (Acsl)6, one of the main fatty acid-activating enzymes. Methods: Differentiated skeletal myotubes were transfected with selected Acsl6 short interfering RNA (siRNA), and C57BL/6J mice were subjected to siRNA to induce Acsl6 deficiency. TAG accumulation and expression levels of insulin signaling proteins in response to acute glucose supplementation were measured in immortalized cell-based skeletal myotubes, oxidative muscles (OM), and glycolytic muscles (GM) derived from the animals. Results: Under conditions of high glucose supplementation, suppression of the Acsl6 gene resulted in decreased TAG and glycogen synthesis in the C2C12 skeletal myotubes. The expression of Glut4, a glucose transporter, was similarly downregulated. In the animal study, the level of TAG accumulation in OM was higher than levels determined in GM. However, a similar decrease in TAG accumulation was obtained in the two muscle types in response to Acsl6 suppression. Moreover, Acsl6 suppression enhanced the phosphorylation of insulin signaling proteins (Foxo-1, mTORc-1) only in GM, while no such changes were observed in OM. In addition, the induction ratio of phosphorylated proteins in response to glucose or Acsl6 suppression was significantly higher in GM than in OM. Conclusion: The results of this study demonstrate that Acsl6 differentially regulates the energy metabolism of skeletal muscles in response to glucose supplementation, thereby indicating that the fiber type or fiber composition of mixed muscles may skew the results of metabolic studies.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • 제23권5호
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

DNA microarray를 이용한 항진균 활성세균 Bacillus lentimorbus WJ5의 유전자 발현 분석 (DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lentimorbus WJ5)

  • 이영근;김재성;장유신;조규성;장화형
    • 미생물학회지
    • /
    • 제39권3호
    • /
    • pp.141-147
    • /
    • 2003
  • 여러 항진균 활성 관련 유전자들의 발현 수준을 동시에 연구하기 위하여 DNA microarray를 이용하여 유전자들의 발현 패턴을 비교 분석하였다. 본 연구에서는 항진균활성을 가지는Bacillus lentimorbus WJ5의 genomic DNA를 무작위 하게 제한효소로 절단하여 2,000개의 DNA단편을 microarray하였으며, 감마선($^{60}Co$)조사로 유도된 7종의 항진균 활성 결핍 돌연변이체와 발현양상을 정량적으로 비교하였다. Gene Cluster (Michael Risen, Stanford Uniy.)를 이용한 DNA microarray의 분석 결과, 총 408개의 DNA 단편이 발현되는 것을 확인할 수 있었으며, 이들 중 20개의 DNA단편이 항진균 활성 결핍 돌연변이체에서 발현이 억제되는 것으로 나타났다. 특히,pbuX (xanthine permease, K222), ywbA (phosphotransferase system enzyme II, K393), ptsG (PTS glucose specific enzyme II ABC component, K877), yufO (ABC transporter(ATP-binding protein), K1301), 그리고 ftsY (signal recognition particle (docking protein), K868)는 모든 돌연변이체에서 동시에 발현되는 down-regulation된 유전자들로서 물질 이동과 관련된 것으로 보고되어 있으며, 항진균 활성 관련 신호 및 물질의 이동에 관여할 것으로 사료되어진다.

β-glucan 함량과 관능검사를 통한 상황버섯 품질기준 모색 (Exploring the quality standard of Phellinus spp through β-glucan content and sensory evaluation)

  • 신용욱
    • 대한본초학회지
    • /
    • 제32권4호
    • /
    • pp.47-52
    • /
    • 2017
  • Objective : Phellinus spp. mushroom is an object of interest because it has excellent anticancer effect. Owing to the similalarities in the morphology, Phellinus linteus and Phellinus baumii are often used as same Sang Hwang Mushroom in the Korean market.. The quality control for mushrooms is needed because there are many differences in the efficacy according to cultivation method and cultivation area. Therefore, a reliable authentication method of these herbal medicine is necessary to compare and measure the amount of beta-glucan which is known to have a hypoglycemic effect, from the mushrooms collected in various regions Methods : 7 samples of medicinal mushrooms supplying phellinus spp. were collected in Korea, China and Cambodia. We investigated the hardness, colors, extract ratio, ${\alpha}-amylase$ and ${\alpha}-glucosidase$ inhibitory activities, glucose transporter 4 (GLUT-4) expressions of water extracts from Phellinus spp and also MTT assay were examined for cell toxicity. Results : The results revealed that Phellinus spp.water Ext.inhibited ${\alpha}-glucosidase$ activity. glucose transporter 4 (GLUT-4), the key insulin signaling pathway transcription factor, was remarkably increased by the Phellinus baumii water extract Conclusions : These results suggest that The more yellowish the mushroom is, the lower the hardness, the more the content of ${\beta}-glucan$ is proportional. Because the more ${\beta}-glucan$, the greater the effect of hypoglycemia. compared to the hypoglycemic effect, Phellinus Baumii grown at hanging on selves for 7 month in the green house is the best.

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn;Bae, Yun Soo
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.139-148
    • /
    • 2009
  • Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

Characterization of Acetoxyscirpendiol of Paecilomyces tenuipes as Inhibitor of Sodium Glucose Co-transporters Expressed in Xenopus laevis Oocytes

  • Park, Il-Woon;Hwang, Gwi-Seo;Kim, Ha-Won;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제12권4호
    • /
    • pp.250-256
    • /
    • 2004
  • Cordyceps possesses numerous health-promoting ingredients including hypoglycemic agents. The mechanism for the reduction of circulatory sugar content, however, is still not fully understand. In this study, 4-beta acetoxyscirpendiol (ASD) was purified from the methanolic extracts from fruiting bodies of Paecilomyces tenuipes. Na+/Glucose transporter-1 (SGLT-1) was expressed in the Xenopus oocytes. The effect of ASD on the oocyte expressed SGLT-1 was analyzed utilizing the voltage clamp and 2-deoxy-D-glucose (2-DOG) uptake studies. ASD was shown to significantly inhibit SGLT-1 activity compared to the non-treated control in a dose- dependent manner. In the presense of its two derivatives (diacetoxyscirpenol or 15-acetoxyscirpendiol), SGLT-1 activity was greatly inhibited similarly as ASD. Between ASD derivatives, 15-acetoxyscirepenol showed inhibition equivalent to that of ASD while diacetoxyscirpenol did less degree of inhibition. Insummary , these results strongly indicate that ASD in P. tenuipes may serve as a functional substance in lowering blood sugar in the circulatory system. ASD and its derivatives can be utilized as inhibitors of SGLT-1.