• Title/Summary/Keyword: Glucose detection

Search Result 177, Processing Time 0.027 seconds

Chemometric A spects of Sugar Profiles in Fruit Juices Using HPLC and GC

  • 윤정현;김건;이동선
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.7
    • /
    • pp.695-702
    • /
    • 1997
  • The objective of this work is to determine the sugar profiles in commercial fruit juices, and to obtain chemometric characteristics. Sugar compositions of fruit juices were determined by HPLC-RID and GC-FID via methoxymation and trimethylsilylation with BSTFA. The appearance of multiple peaks in GC analysis for carbohydrates was disadvantageous as described in earlier literatures. Fructose, glucose, and sucrose were major carbohydrates in most fruit juices. Glucose/fructose ratios obtained by GC were lower than those by HPLC. Orange juices are similar to pineapple juices in the sugar profiles. However, grape juices are characterized by its lower or no detectable sucrose content. In addition, it was also found that unsweeten juices contained considerable level of sucrose. Chemometric technique such as principal components analysis was applied to provide an overview of the distinguishability of fruit juices based on HPLC or GC data. Principal components plot showed that different fruit juices grouped into distinct cluster. Principal components analysis was very useful in fruit juices industry for many aspects such as pattern recognition, detection of adulterants, and quality evaluation.

One-pot synthesis of highly fluorescent amino-functionalized graphene quantum dots for effective detection of copper ions

  • Tam, Tran Van;Choi, Won Mook
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1255-1260
    • /
    • 2018
  • In this work, a green and simple one-pot route was developed for the synthesis of highly fluorescent aminofunctionalized graphene quantum dots (a-GQDs) via hydrothermal process without any further modification or surface passivation. We synthesized the a-GQDs using glucose as the carbon source and ammonium as a functionalizing agent without the use of a strong acid, oxidant, or other toxic chemical reagent. The as-obtained aGQDs have a uniform size of 3-4 nm, high contents of amino groups, and show a bright green emission with high quantum yield of 32.8%. Furthermore, the a-GQDs show effective fluorescence quenching for $Cu^{2+}$ ions which can serve as effective fluorescent probe for the detection of $Cu^{2+}$. The fluorescent probe using the obtained aGQDs exhibits high sensitivity and selectivity toward $Cu^{2+}$ with the limit of detection as low as 5.6 nM. The mechanism of the $Cu^{2+}$ induced fluorescence quenching of a-GQDs can be attributed to the electron transfer by the formation of metal complex between $Cu^{2+}$ and the amino groups on the surface of a-GQDs. These results suggest great potential for the simple and green synthesis of functionalized GQDs and a practical sensing platform for $Cu^{2+}$ detection in environmental and biological applications.

Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor (표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용)

  • Min-Jung Song
    • Korean Chemical Engineering Research
    • /
    • v.62 no.2
    • /
    • pp.147-152
    • /
    • 2024
  • Most medical sensors are disposable products. In order to reduce inspection and diagnosis costs, it is more important to develop the inexpensive electrode materials. We fabricated the CuO NPs/PANI/E-PGE as an electrode material for disposable electrochemical sensors and applied it to a non-enzymatic glucose sensor. For surface activation of PGE, pretreatment was performed using chemical and electrochemical methods, respectively. Electrochemical properties according to the pretreatment method were analyzed through chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance (EIS). From these analytical results, the electrochemically pretreated PGE (E-PGE) was finally adopted. The non-enzymatic glucose sensor based on CuO NPs/PANI/E-PGE shows sensitivity of 239.18 mA/mM×cm2 (in a linear range of 0.282~2.112 mM) and 36.99 mA/mM×cm2 (3.75423~50 mM), detection limit of 17.6 μM and good selectivity. Based on the results of this study, it was confirmed that the modified PGE is a high-performance electrode material. Therefore, these electrodes can be applied to a variety of disposable sensors.

Effectiveness of Clinical Examination for Detection of Respiratory Tuberculosis (호흡기 결핵 환자에서 임상 검사의 유용성)

  • Choi, Woo-Soon;Choo, Sang-Kyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.54-58
    • /
    • 2006
  • To find out the effectiveness of clinical examination for the diagnosis of respiratory tuberculosis, a 78 respiratory tuberculosis patient,s group was matched by sex and age with 78 control healthy subjects. In the result of blood chemistry, mean values of $123.5{\pm}62.04mg/dL$ in glucose, $429.01{\pm}150.77IU/L$ in LDH, and $44.51{\pm}43.76IU/L$ in ${\gamma}$-GTP, were higher than that of the controls (healthy subjects), and $3.51{\pm}0.68mg/dL$ in albumin was lower than that of the controls. In the result of the haematology examination, mean values of $12.52{\pm}3.27g/dL$ in hemoglobin, $36.72{\pm}7.28%$ in hematocrit, and $24.61{\pm}12.36%$ in lymphocyte, were lower than that of the controls, $9.23{\pm}5.25%$ in monocyte $78.30{\pm}37.35mm/hr$ in ESR, and $48.45{\pm}35.15U/L$ in ADA were higher than that of the controls. For the comparisons of the tuberculosis patients values from normal reference values, 22.2% in glucose, 22.4% in LDH, 25.0% in ${\gamma}$-GTP, 35.4% in albumin, 88% in ESR, and 88.6% in ADA, showed abnormal values. We concluded that the values of glucose, ${\gamma}$-GTP, albumin, WBC, RBC, hemoglobin, hematocrit, lymphocyte, monocyte, ADA, and the ESR were useful in tuberculosis diagnosis.

  • PDF

Determinants of Adherence to Diabetes Screening in Iranian Adults With a Positive Family History of Diabetes

  • Malih, Narges;Sohrabi, Mohammad-Reza;Abadi, Alireza;Arshi, Shahnam
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.3
    • /
    • pp.190-198
    • /
    • 2021
  • Objectives: Insufficient evidence exists regarding factors that affect screening adherence among people with a family history of diabetes, who comprise roughly half of all patients with diabetes. Therefore, we aimed to identify the determinants of diabetes screening adherence in adults with a family history of diabetes who had not yet been diagnosed with diabetes. Methods: This cross-sectional study was conducted at selected urban primary healthcare facilities in Tehran, Iran. The study population was clinically non-diabetic adults above 20 years of age with a family history of diabetes in at least 1 first-degree relative. All eligible people identified on randomly-selected days of the month were invited to join the study. Results: Among 408 participants, 128 (31.4%) had received a fasting blood glucose check during the last year. Using binary logistic regression, the independent predictors of screening adherence were knowledge of adverse effects of diabetes such as sexual disorders (odds ratio [OR], 3.05) and renal failure (OR, 2.73), the impact of family members' advice on receiving diabetes screening (OR, 2.03), recommendation from a healthcare provider to have a fasting blood glucose check (OR, 2.61), and intention to have a fasting blood glucose check within the next 6 months (OR, 2.85). Other variables that predicted screening adherence were age (OR, 1.05), job (being a housekeeper; OR, 3.39), and having a college degree (OR, 3.55). Conclusions: Knowledge of the adverse effects of diabetes, physicians' and healthcare providers' advice about the benefits of early disease detection, and family members' advice were independent predictors of screening adherence.

Decreased Expression of TRPV4 Channels in HEI-OC1 Cells Induced by High Glucose Is Associated with Hearing Impairment

  • Xing, Ying;Ming, Jie;Liu, Tao;Zhang, Nana;Zha, Dingjun;Lin, Ying
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1131-1137
    • /
    • 2018
  • Purpose: Previous reports have shown that hyperglycemia-induced inhibition of transient receptor potential vanilloid sub type 4 (TRPV4), a transient receptor potential ion channel, affects the severity of hearing impairment (HI). In this study, we explored the role of TRPV4 in HI using HEI-OC1 cells exposed to high glucose (HG). Materials and Methods: HEI-OC1 cells were cultured in a HG environment (25 mM D-glucose) for 48 hours, and qRT-PCR and Western blotting were used to analyze the expression of TRPV4 at the mRNA and protein level. TRPV4 agonist (GSK1016790A) or antagonist (HC-067047) in cultured HEI-OC1 cells was used to obtain abnormal TRPV4 expression. Functional TRPV4 activity was assessed in cultured HEI-OC1 cells using the MTT assay and a cell death detection ELISA. Results: TRPV4 agonists exerted protective effects against HG-induced HI, as evidenced by increased MTT levels and inhibition of apoptosis in HEI-OC1 cells. TRPV4 overexpression significantly increased protein levels of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), while TRPV4 antagonists had the opposite effect. Our results indicated that TRPV4 is a hyperglycemia-related factor that can inhibit cell proliferation and promote cell apoptosis by activating the MAPK signaling pathway in HEI-OC1 cells. Conclusion: Our results show that the overexpression of TRPV4 can attenuate cell death in HEI-OC1 cells exposed to HG.

Sensitive and Selective Electrochemical Glucose Biosensor Based on a Carbon Nanotube Electronic Film (탄소나노튜브 전자 필름을 이용한 고감도-고선택성 전기화학 글루코스 센서)

  • Lee, Seung-Woo;Lee, Dongwook;Seo, Byeong-Gwuan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.188-194
    • /
    • 2022
  • This work presents a non-destructive and straightforward approach to assemble a large-scale conductive electronic film made of a pre-treated single-walled carbon nanotube (SWCNT) solution. For effective electron transfer between the immobilized enzyme and SWCNT electronic film, we optimized the pre-treatment step of SWCNT with p-terphenyl-4,4"-dithiol and dithiothreitol. Glucose oxidase (GOx, a model enzyme in this study) was immobilized on the SWCNT electronic film following the positively charged polyelectrolyte layer deposition. The glucose detection was realized through effective electron transfer between the immobilized GOx and SWCNT electronic film at the negative potential value (-0.45 V vs. Ag/AgCl). The SWCNT electronic film-based glucose biosensor exhibited a sensitivity of 98 ㎂/mM·cm2. In addition, the SWCNT electronic film biosensor showed the excellent selectivity (less than 4 % change) against a variety of redox-active interfering substances, such as ascorbic acid, uric acid, dopamine, and acetaminophen, by avoiding co-oxidation of the interfering substances at the negative potential value.

Simultaneous Determination of Fructose, Glucose, and Sucrose in Honey and Commercial Drinks by GC and GC/MS (GC 및 GC/MS를 이용한 벌꿀 및 시판 음료 중의 Fructose, Glucose 및 Sucrose의 동시분석)

  • Yun, Jeong-Sik;Jeon, Hyun-Suk;Kim, In-Suk;Lee, Hee-Jin;Lee, Hye-Jeong;Hyun, Jae-Yeoul;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.537-544
    • /
    • 2013
  • This study was performed to establish method of simultaneous determination of fructose, glucose, and sucrose in honey and commercial vitamin drinks by GC and GC/MS. Optimum chromatographic separation of trimethylsilyl-oxime (TMSO) derivatives by GC was achieved on a DB-5 column. Calibration curves for fructose, glucose and sucrose TMSO derivatives by GC were linear in the range of 50-5000 ${\mu}g/mL$, and their $r^2$ values were 0.9999, The limit of detection and limit of quantification of fructose, glucose, and sucrose were 0.68, 0.47, and 0.53 ${\mu}g/mL$, respectively, and 2.27, 1.58, and 1.77 ${\mu}g/mL$, respectively. Average recoveries of fructose, glucose, and sucrose were 100.5, 101.0, and 99.7%, respectively. When the method was applied to 12 honey samples, the average concentrations of fructose, glucose and sucrose were $42.58{\pm}1.97%$, $27.74{\pm}1.16%$, and $0.79{\pm}0.52%$, respectively. The F/G ratio was $1.53{\pm}0.07$. For fructose and glucose contents, results from the GC analysis were similar to those from the HPLC analysis, but the sucrose content was different for each analysis method. We suggest that the GC method is more suitable than other official analytical methods for simultaneous determination of fructose, glucose, and sucrose in honey.

Utility of PET in Gynecological Cancer (부인암에서 양전자방출단층촬영의 이용)

  • Choi, Chang-Woon
    • 대한핵의학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.9-13
    • /
    • 2002
  • Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studios performed with 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG). Although many cancers can be detected by FDG-PET, there has been limited clinical experience with FDG-PET for the defection of gynecological cancers including malignancies in uterus and ovary. FDG-PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can and in the characterization of indeterminate soft-tissue masses. Most gynecological cancers need to surgical management. FDG-PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG-PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. In this review, I discuss the clinical feasibility and limitations of this imaging modality in patients with gynecological cancers.

  • PDF

Changing Role of Nuclear Medicine for the Evaluation of Focal Hepatic Tumors: From Lesion Detection to Tissue Characterization (국소 간 종양의 조직적 특성을 평가하는데 있어 최근 핵의학의 역할)

  • Kim, Chun-Ki;Yu, Mi-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.3
    • /
    • pp.211-224
    • /
    • 1998
  • The role of scintigraphic imaging has moved from the detection of lesions to the tissue-specific characterization of lesions over the past 2 decades. Major advances in nuclear medicine imaging include: 1) positron imaging, 2) improved instrumentation, such as the use of multidetector (dual or triple head) gamma cameras for single photon emission computed tomography, and 3) development of numerous new radiopharmaceuticals for positron or single photon imaging (labeled glucose analogue, amino acids, fatty acids, hormones, drugs, receptor ligands, monoclonal antibodies, etc). These advances have resulted in a significantly improved efficacy of radionuclide techniques for the evaluation of various tumors, including those within the liver. The current role of nuclear medicine in the evaluation of focal hepatic tumors is reviewed in this article with an emphasis on the clinical applications of various tracer studies and imaging findings.

  • PDF