• Title/Summary/Keyword: Glucose biosensor

Search Result 69, Processing Time 0.031 seconds

Electrochemical Detection of Self-Assembled Viologen Modified Electrode as Mediator of Glucose Sensor

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.106-110
    • /
    • 2009
  • An amperometric glucose biosensor has been developed using viologen derivatives as a charge transfer mediator between a glucose oxidase (GOD) and a gold electrode. A highly stable self-assembled monolayer (SAM) of thiol-based viologen was immobilized onto the gold electrode of a quartz crystal microbalance (QCM) and GOD was immobilized onto the viologen modified electrode. This biosensor response to glucose was evaluated amperometrically in the potential of -300mV. Upon immobilization of the glucose oxidase onto the viologen modified electrode, the biosensor showed rapid response towards glucose. Experimental conditions influencing the biosensor performance, such as pH potential, were optimized and assessed. This biosensor offered excellent electrochemical responses for glucose concentration below ${\mu}$ mol level with high sensitivity and selectivity and short response time. The levels of the RSDs (<5%) for the entire analyses reflected the highly reproducible sensor performance. A linear calibration range between the current and the glucose concentration was obtained up to $4.5{\times}10^{-4}M$. The detection limit was determined to be $3.0{\times}10^{-6}M$.

$H_2O_2$ Detection Property of Glucose Sensor using Self Assembled Viologen Modified Electrode as Mediator (Viologen 유도체를 전하전달체로 이용한 Glucose 센서의 $H_2O_2$ 검출 특성)

  • Lee, Dong-Yun;Choi, Won-Suk;Park, Sang-Hyun;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.86-87
    • /
    • 2007
  • An amperometric glucose biosensor has been developed using viologen derivatives as electron mediator of glucose oxidase (GOD) at Au electrode. Highly stable self assembled monolayer (SAM) of thiol-based viologen is immobilized onto the Au electrode followed byGOD is immobilized onto the viologen modified electrode. This biosensor response to glucose was evaluated amperometrically in the potential of -300 mV. Upon immobilization of glucose oxidase onto the viologen modified-electrode, the biosensor showed rapid response towards glucose. Experimental conditions influencing the biosensor performance such as, pH, potential were optimized and assessed. This biosensor offered an excellent electrochemical response for glucose concentration below ${\mu}mol$ level with high sensitivity and selectivity and short response time. The levels of the RSD's (< 5 %) for the entire analyses reflected the highly reproducible sensor performance. Using the optimized a linear relationship between current and glucose concentration was obtained up to $4.5{\times}10^{-4}$ M. In addition, this biosensor showed well reproducibility and stability.

  • PDF

Fabrication of enzymatic biosensor based on the poly(3-thiophenecarboxylic acid-co-thiophene) polymer as electron-transfer materials

  • Kim, Soo-Yeoun;Jo, Hyeon-Jin;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.269-278
    • /
    • 2019
  • We fabricated glucose oxidase (GOx)-modified biosensor for detection of glucose by physical immobilization of GOx after electrochemical polymerization of the conductive mixture monomers of the 3-thiophenecarboxylic acid (TCA) and thiophene (Th) onto ITO electrode in this study. We confirmed the successfully fabrication of GOx-modified biosensor via FT-IR spectroscopy, SEM, contact angle, and cyclic voltammetry. The fabricated biosensor has the detection limit of $0.1{\mu}M$, the linearity of 0.001-27 mM, and sensitivity of $38.75mAM^{-1}cm^{-2}$, respectively. The fabricated biosensor exhibits high interference effects to dopamine, ascorbic acid, and L-cysteine, respectively. From these results, the fabricated GOx-modified biosensor with long linearity and high sensitivity could be used as glucose sensor in human blood sample.

Development of Glucose Biosensor Using Sol-Gel Reaction of Tetraethoxysilane (Tetraethoxysilane의 졸-겔 반응을 이용한 전기화학적 glucose biosenor 개발)

  • Chang, Seong-Cheol;Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.311-317
    • /
    • 2012
  • Disposable amperometric screen-printed biosensor strips have been fabricated by a sol-gel encapsulation for the analysis of glucose. The glucose oxidase(GOx) is entrapped in the gel matrix through sol-gel transition of tetraethoxysliane(TEOS). The biosensor is fabricated by GOx containing thin film of TEOS gel on the surface of screen-printed carbon electrode(SPCE). The GOx-containing thin film of TEOS gel offers a one-step modification process on the surface of SPCE. The optimum conditions for glucose determination have been characterized with respect to the applied potential, enzyme loading ratio, and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 16.0 mM and 0.25 mM, respectively.

Measurement of Glucose Concentration Using a μFIA Biosensor (μFIA 바이오 센서를 이용한 포도당 농도 측정)

  • ;Joseph Irudayaraj
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.465-468
    • /
    • 2003
  • A microdialysis coupled flow injection amperometric biosensor was calibrated to measure the concentration of glucose using 7 standard samples from 10ml to 70ml of glucose solution. The output of the sensor increased linearly with an increase in the glucose concentration with an $R^2$ correlation of 0.99. The amperometric biosensor was then applied to measure the. glucose concentration of 2 commercial samples(Orange and Pineapple juice) and the results compared with HPLC. Around 12% error was observed in glucose concentration measurements of the samples analyzed. The sensor has potential in rapid measurement once the calibration is done. Potential for on-line sensing is also discussed.

Amperometric Glucose Biosensor Based on Sol-Gel-Derived Zirconia/Nafion Composite Film as Encapsulation Matrix

  • Kim, Hyun-Jung;Yoon, Sook-Hyun;Choi, Han-Nim;Lyu, Young-Ku;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • An amperometric glucose biosensor has been developed based on the use of the nanoporous composite film of sol-gel-derived zirconia and perfluorosulfonated ionomer, Nafion, for the encapsulation of glucose oxidase (GOx) on a platinized glassy carbon electrode. Zirconium isopropoxide (ZrOPr) was used as a sol-gel precursor for the preparation of zirconia/Nafion composite film and the performance of the resulting glucose biosensor was tuned by controlling the water content in the acid-catalyzed hydrolysis of sol-gel stock solution. The presence of Nafion polymer in the sol-gel-derived zirconia in the biosensor resulted in faster response time and higher sensitivity compared to those obtained at the pure zirconia- and pure Nafion-based biosensors. Because of the nanoporous nature of the composite film, the glucose biosensor based on the zirconia/Nafion composite film can reach 95% of steady-state current less than 5 s. In addition, the biosensor responds to glucose linearly in the range of 0.03-15.08 mM with a sensitivity of 3.40 $\mu$A/mM and the detection limit of 0.037 mM (S/N = 3). Moreover, the biosensor exhibited good sensor-to-sensor reproducibility (~5%) and long-term stability (90% of its original activity retained after 4 weeks) when stored in 50 mM phosphate buffer at pH 7 at 4 ${^{\circ}C}$.

Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor (Laser ablation을 이용한 폴리이미드 필름 전극제조 및 전기화학적 글루코오즈 바이오센서 응용)

  • Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.357-363
    • /
    • 2013
  • An ultraviolet pulsed laser ablation of polyimide film coated with platinum has been used to enhance the sensitivity for the application as an electrochemical biosensor. Densely packed cones are formed on polyimide surface after UV irradiation which results in increase of surface area. In order to apply the sensitivity improvement of laser ablated polyimide film electrodes, the glucose oxidase modified biosensor was fabricated by using an encapsulation in the gel matrix through sol-gel transition of tetraethoxysliane on the surface of laser ablated polyimide film. The optimum conditions for glucose determination have been characterized with respect to the applied potential and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 18.0 mM and 0.18 mM, respectively. The sensitivity of glucose biosensors fabricated with laser ablated polyimide film is about three times higher than that of plain polyimide film due to increase in surface area by laser ablation.

Simultaneous Determination of Glucose and Ethanol of Takju by Biosensor using Dual Cathode Electrode (Dual Cathode Electrode를 이용한 바이오센서로 탁주 중의 포도당 및 에탄올의 동시 측정)

  • Park, In-Seon;Kim, Jung-Ho;Kim, Tae-Jin;Kim, Nam-Soo;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.974-980
    • /
    • 1996
  • A biosensor was prepared with dual cathode electrode and immobilized enzyme membrane. A nylon net was used for the immobilization of glucose oxidase and alcohol oxidase. The immobilized enzymes were placed on the surface of the electrode which was prepared with one anode and two cathodes as an oxygen electrode. The determination of components by the biosensor was based on the consumption of dissolved oxygen. The optimum condition of this system was 0.1 M potassium phosphate buffer solution, pH 7.5 at $35^{\circ}C$. Glucose and ethanol in takju were simultaneously determined by the biosensor. Comparing with UV-spectrophotometer and gas chromatograph for cross checking, there was a good correlation between the biosensor and the conventional methods. Biosensor with dual cathode electrode required no clarification or pretreatments. It was used for simultaneous determination of glucose and ethanol during the fermentation of takju.

  • PDF

Preparation of Graphene-Palladium Composite by Aerosol Process and It's Characterization for Glucose Biosensor (에어로졸 공정에 의한 그래핀-팔라듐 복합체 제조 및 글루코스 바이오센서 특성평가)

  • Kim, Sun Kyung;Jang, Hee Dong;Chang, Hankwon;Choi, Jeong-Woo
    • Particle and aerosol research
    • /
    • v.10 no.2
    • /
    • pp.53-59
    • /
    • 2014
  • Palladium (Pd) nanoparticles attached graphene (GR) composite was synthesized for an enhanced glucose biosensor. Aerosol spray pyrolysis (ASP) was employed to synthesize the GR-Pd composite using a colloidal mixture of graphene oxide (GO) and palladium chloride ($PdCl_2$) precursor. The effects of the weight ratio of the Pd/GR on the particle properties including the morphology and crystal structure were investigated. The morphology of GR-Pd composites was generally the shape of a crumpled paper ball, and the average composite size was about $1{\mu}m$. Pd nanoparticles less than 20 nm in diameter were deposited on GR sheets and the Pd nanoparticles showed clear crystallinity. The characteristic of the glucose biosensor fabricated with the as-prepared GR-Pd composite was tested through cyclic voltammetry measurements. The biosensor exhibited a high current flow as well as clear redox peaks, which resulted in a superior ability of the catalyst in terms of an electrochemical reaction. The highest sensitivity obtained from the amperometric response of the glucose biosensor was $14.4{\mu}A/mM{\cdot}cm^2$.